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First connectomics challenge 
in neuronal cultures 

Crowdsourcing network reconstruction



Outline 2

Model system to study the interplay between activity and connectivity in 
neuronal systems 

Mostly random network structure - dynamics leads to complex effective 
networks 

You can easily manipulate the topology, for example by modifying 
the growth substrate (spatial embedding) 

Develop and test network inference methods (causality) in neuroscience

Neuronal cultures

First connectomics challenge in neuronal cultures
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Dynamics in young cultures 5
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Each burst is in fact a propagating front of  activity. And can only originate 
in specific locations of  the culture (nucleation sites)
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Distribution of  nucleation sites 7
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Bursts only originate in 
specific regions

Only a part of  the 
network is capable of  
burst generation



Underlying network (through modeling) 8
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Characterize the structure of  the 
effective network responsible of  
burst initiation

Orlandi et al, Nature Physics 2013

‘trivial’ structural connectivity 
gives rise to effective networks 
with broad-degree distributions
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Homogeneous (coated substrate) Clustered (uncoated)

node

link



Clustered cultures 10

Each cluster acts as a single unit 

Modular firing patterns
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‘structural’ network

1 mm

effective network 
(from causal inference)

Teller et al, PLOS Comput Biol 2014

Assortative mixing 
Rich club structure
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before after

Evolution of the effective network after node removal (laser ablation)
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Indirect access to the network structure (from the dynamics) 

Identify causal interactions in time series
• Correlation 

• Mutual information 

• Granger causality 

• Transfer entropy

Given sets of  interdependent variables X and Y, it is said 
that “Y G-causes X” if, in an appropiate statistical sense, 
Y assists in predicting the future of  X beyond the degree 
to which X already predicts its own future.

Y X Barnett, PRL 2009
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Generalized Transfer Entropy 15
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Developed to deal with the singularities of  culture dynamics 

Fluorescence imaging 

Bursting dynamics 

Low acquisition speeds 

Low signal to noise ratio 

Light scattering 

Purely excitatory networks

Again, reconstructed network properties correlate with real
properties. The reconstructed distribution of connection distances
displays a reduced right-tail compared to the real one. A tendency
to estimate a more local connectivity is evident also from a marked
overestimation of local clustering coefficients. We attribute such a
mismatch to light scattering artifacts that increase local correla-
tions in a spatial region matching the length scale of real structural
connections. This is confirmed by the fact that the length scale is
correctly inferred in simulations without the light scattering artifact
(not shown).

Note, that there is again a very good linear correlation
(Pearson’s correlation of r~0:97) between the actual and
reconstructed (spatial) average connection length, as shown in
Figure 5D. Similarly, the reconstructed average clustering
coefficient is linearly correlated with that of the ground truth
(r~0:98), as shown in Supplementary Figure S4B.

Sensitivity to reconstruction approaches. Overall, TE of
Markov order k~2 (i.e. taking into account multiple time scales of
interaction, see Eq. (11) in Materials and Methods section) achieved a
performance level ranging between 40% and 80% at a level of
10% of false positives, for any clustering type and level.

In Figure 4C and Figure 5D we compare the performance of
generalized TE with other reconstruction strategies, respectively
for the non-local and for the local clustering ensemble. We
considered, as competitors, crosscorrelation (XC), Granger Cau-
sality (GC) or Mutual Information (MI) metrics. All of these
methods have previously been used to study the connectivity in
neural networks [40,56–61]. Detailed definitions of these methods
and of the adaptations we introduce for a fair comparison with
generalized TE are provided in the Materials and Methods section.
When using these alternative metrics, functional networks were
extracted exactly as when using generalized TE. The only

Figure 8. Network reconstruction of an in vitro neuronal culture at DIV 12. A Example of TE reconstructed connectivity in a subset of 49
neurons (identified by black dots) in a culture with N~1720 marked neurons (regions of interest) in the field of view, studied at day in vitro 12. Only
the top 5% of connections are retained in order to achieve, in the final reconstructed network, an average connection degree of 100 (see Results). B
Properties of the network inferred from TE reconstruction method (top panels) compared to a cross-correlation (XC) analysis (bottom panels). The
figure shows reconstructed distributions for the in-degree (left column), the connection distance (middle column), and the clustering coefficient
(right column). In addition to the actual reconstructed histograms (yellow), distributions for randomized networks are also shown. Blue color refers to
complete randomizations that preserves only the total number of connections, and red color to partial randomizations that shuffle only the target
connections of each neuron in the reconstructed network.
doi:10.1371/journal.pcbi.1002653.g008

Excitatory Connectivity from Calcium Imaging

PLOS Computational Biology | www.ploscompbiol.org 10 August 2012 | Volume 8 | Issue 8 | e1002653

Stetter et al, PLOS Comput Biol 2012

From the causal interactions, obtain the underlying network
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Extended to deal with inhibition
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Orlandi et al, PLOS ONE 2014

Also possible to infer neuronal 
type (excitatory/inhibitory)



fraction of false positives

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

fra
ct

io
n 

of
 tr

ue
 p

os
iti

ve
s

excitatory
inhibitory

Generalized Transfer Entropy 17

How good are the reconstructions?

random

perfect
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Generalized Transfer Entropy 17

How good are the reconstructions?

AUC

AUC ~ 0.89

Still room for improvement! 
A lot actually…

Also, do not trust any single  
method (for causal inference)
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Spend many years, (or many PhDs) improving the techniques

Or rather outsource it
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Challenges in Machine Learning (collaborative competitions)

Challenges to stimulate research across different fields

Launch the first (of  a series) of  online challenges in connectomics

Infer the network structure of  neuronal cultures based solely on 
simulated calcium fluorescence imaging data 

Provided:
Fluorescence traces of  1000 neurons
Neuronal positions

10 sample datasets with known-truth topology with different conditions 
(signal to noise ratio, framerate, …)

Participants asked to predict the structural topology of  two different 
networks with unknown topology - ranked based on AUC performance
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Challenge overview 21



Challenge overview 22
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~20% performance increase over standard techniques (in 3 months)



Challenge final scores 24



Preprocessing of  fluorescence signals 25
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Post-challenge 29

Analysis of  methods used by the participants: 
Deep convolutional neural networks 
State selection 
Multivariate logistic regression of  inferred spike trains 
Inverse covariance matrix 
Random forests and gradient boosting machines 
Network deconvolution 
…

Checking for robustness of  the methods 
Pool together the different approaches (wisdom of  crowds) 

Code from the winning teams is publicly available with open 
sources licenses (and all the data associated with the 
challenge) http://www.kaggle.com/c/connectomics



Conclusions 30

Useful tool to test concepts and properties related to the connectome in a 
well controlled environment 

Neuronal cultures

Challenges

A different approach to collaborative research
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