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Centuries are needed to nurture the tree of
science and make it grow, but one blow from
the hatchet of destruction cuts it down.

– Bernard Germain de Lacépède, 1801
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1

0
Outline of the thesis

In this thesis we apply a multidisciplinary approach, based on statistical physics and
complex systems, to the study of neuronal dynamics. We focus on understanding,
using theoretical and computational tools, how collective neuronal activity emerges
in a controlled system, a neuronal culture. We show how the interplay between
noise and network structure defines the emergent collective behavior of the system.

Chapter 1 comprises the general introduction. We present a personal view on the
fields of complex systems, multidisciplinary physics, and modern neuroscience. As
well as our take on how one can benefit from the other. We proceed to describe how
neuronal cultures are an extremely useful system to study physics and neuroscience
simultaneously. We also include a general review of most of the research topics
within neuronal cultures that are relevant to physics, as well as a brief summary of
the physiological ingredients required to understand them.

Chapter 2 contains the most salient results of this thesis. We build a simulation
framework that takes into account the underlying network structure of neuronal
cultures and use an accurate, yet simple, model for the individual neuronal dynam-
ics. We show that the collective behavior of young cultures is dominated by the
nucleation and propagations of activity fronts (bursts) throughout the system. These
bursts nucleate at specific sites of the culture, called nucleation points, which result
in a highly heterogeneous probability distribution of nucleation. We are able to
explain theoretically the nucleation process by means of a mechanism of noise
propagation and amplification, called noise focusing.



2 0. Outline of the thesis

Noise, in the form of the spontaneous activity of individual neurons, is characterized
by avalanches of activity, which travel and are amplified through the network in
well–defined paths. The convergence of these paths of activity is what characterizes
the different nucleation sites, i.e., the confluence of amplification paths. These
preferred paths also form an effective network, which is a subset of the original
structural network that comprise most of the activity. We show how the underlying
dynamics are able to transform the structural network, with Gaussian–like degree
distributions into effective scale–free networks.

We also present experimental confirmation of the wave–like structure of activity
bursts in young cultures and present evidence of the noise focusing mechanism.

Chapter 3 further explores the internal structure of activity avalanches by using
well–defined regular networks, in which all the neurons have the same connectivity
rules (motifs). Within these networks, we are able to associate to the avalanches an
effective velocity and topological size and relate it to specific motifs.

In Chapter 4 we devise a continuum description of a neuronal culture at the
mesoscale, i.e., we move away from the single neuron dynamics into a coarse–
grained description that is able to capture most of the characteristic observables
presented in previous chapters.

Chapter 5 is dedicated to studying neuronal cultures within the framework of
quorum percolation. We study the effect of network structure within quorum perco-
lation and propose a new model, called stochastic quorum percolation that includes
dynamics and the effect of internal noise.

In Chapter 6, we use tools from information theory, namely transfer entropy, to show
how to reliably infer the connectivity of a neuronal network from its activity, and
how to distinguish between different excitatory and inhibitory connections purely
from the activity, with no prior knowledge of the different neuronal types. The
technique works directly on the fluorescence traces obtained in calcium imaging
experiments, without the need to infer the underlying spike trains.

Finally, Chapter 7 summarizes the general results, conclusions and perspectives
that are drawn from this thesis.



3

1
Introduction

The 21st century is giving birth to a new era whose reach is still too early to grasp.
Its origins might very well be the invention of new technologies and the geopolitical
changes that arose after the cold war. The ways in which we communicate, process
and store information, coupled with globalization, free market economies and
fading physical and cultural frontiers are all working together towards a new model
of society, and science is at its core.

Not only is science the source of new technologies, but it also nourishes from
them. With the ’big data’ (the ability to record vast amounts of information) and
the ’quantification’ (measuring everything) revolution that is currently undergoing,
traditional scientific disciplines are looking at new ways to understand the world.
Physics (and physicists) in particular, might be the best example. Probably the first
discipline to use and generate large amounts of data, and quantitative by definition,
its reach is now spanning across other disciplines. There has been a constant flow of
physicists into other areas of science: biology, chemistry, neuroscience, economics
and social sciences to name a few. These other sciences were originally observa-
tional and mostly descriptive, but they are evolving. Biology is not about writing a
catalog of life anymore; new disciplines like systems biology and bioinformatics
are transforming more traditional fields like genetics, cell biology and biochemistry.
Chemists are engineering new molecules and compounds in silico1, trying millions
of candidates before going to the lab to finally synthesize them. Economists are
tracking, analyzing and predicting markets and human interactions in real time,
leading to a new understanding of social behavior.

1 The term in silico, i.e., a computer simulation, will be used throughout this thesis.



4 1. Introduction

These multidisciplinary advances have at its core the complexity of the systems
under study, made of multiple interconnected and heterogeneous units, interacting in
non-deterministic ways. Although all these fields and systems might look unrelated
(what does a protein-interaction network, an ecosystem and a financial market have
in common?), they all share similarities and possibly some universal properties. By
trying to understand them, the new field of complex systems has emerged. Although
it began as a branch of statistical physics, i.e., complex networks [Albert 2002],
it has quickly gained popularity, where scientists across many different fields are
using their concepts and theories.

Although the concept of ’big data’ probably began with CERN, it really took off with
the Human Genome Project [Lander 2001] (HGP), where many laboratories across
the world teamed together to sequence the whole human genome and made the data
publicly available. Although these projects spanned large teams and collaborations,
they were not truly multidisciplinary or had anything to do with complex systems
per se. The amount of data the HGP produced and the need to understand it, however,
triggered the interest of many scientists from other disciplines, and subfields like
systems biology and bioinformatics flourished.

Concurrently, the seminal works on complex networks by D. J. Watts & S. H.
Strogatz [Watts 1998] and A. Barabási & R. Albert [Barabási 1999] appeared, and
modern network theory was born. Network theory has become essential for the
study of any complex system (its elements interact between them through a network
structure), and has spanned its own subfield of complex networks, which coupled
with the aforementioned access to ’big data’ has heavily influenced new scientists
into looking at their research in a different way.

Although many fields quickly embraced this new approach, neuroscience appeared
to be falling behind. One of the sciences that could benefit the most from this
new approach was evolving slowly. Probably because the technological advances
required to obtain ’big data’ in neuroscience took longer to develop, and are only
starting to become available now (see Figure 1.1).

The change, however, finally arrived in 2013, overshadowing all other disciplines.
The coeval announcement of the Human Brain Project (HBP) [Waldrop 2012,
Abbott 2013a] by the European Commission and the BRAIN Initiative [Shen 2013]
by the U.S. administration triggered a new era in neuroscience [Abbott 2013b].
Although these projects might be ill-conceived, and even backfire (as some have
already suggested [Fregnac 2014]), they are going to push neuroscience forward and
modernize it to the level of other disciplines. The development of new measuring
techniques, new ways to analyze data and coordinated efforts towards well defined
goals should compensate any backlash due to these projects not reaching their
proposed milestones. These projects have returned neuroscience the attention it
deserves, and made understanding the brain the ultimate challenge for the upcoming
decades, if not for the whole century.
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Figure 1.1 Main methods in neuroscience. Regions of applicability of each modern exper-
imental technique in neuroscience. Open regions denoting measurement techniques and filled
regions perturbation ones. Inset, the regions available in 1988. Repr. with perm. [Sejnowski 2014].

1.1 The brain, the challenge of the 21st century

Back in the fifth century B.C., Hippocrates already considered the brain as “the seat
of intelligence, sensory perception and motor control”, and also as the source of
emotions, amongst others (contrary to the Aristotelian view, that believed the heart
to be the center of sensation and movement) [Gross 1995, Crivellato 2007]. But it
was not until the late nineteenth century and the works by S. Ramón y Cajal (aided
by the development of Golgi stains [De Carlos 2007]), that we started to understand
the inner workings of the brain, and neuroscience, as we know it, was born. Ramón y
Cajal greatest breakthrough came by identifying the neuron as the fundamental unit
in the brain, and the synapses as the main component of information transmission;
what is now called the ’neuron doctrine’ [Cajal 1906]. He even identified the first
microcircuits as well as myriads of different neuronal types, and even postulated
some sort of synaptic plasticity, in the same lines as D. G. Hebb did many years
later, what is nowadays known as Hebbian plasticity [Markram 2012].

Now in the twenty-first century, new theories and technological developments
are redefining and even changing the old neuron doctrine. Recent analysis of
neuronal activity at the nanoscale [Sjöström 2008] suggests that a more fundamental
computational unit that the neuron exists, the dendrites. Each branch of the dendritic
tree seems to react in a particular and non–linear way to the received inputs and also



6 1. Introduction

trigger dendritic spikes affecting the whole neuronal behavior2. On the other hand,
several studies [Grillner 2006] suggest that to understand brain activity and behavior
(specially in the more advanced areas like the cortex), we might need to forget
about the neuron altogether, and consider the ’microcircuit’3 as the fundamental
computational unit.

These new ways of looking at the brain might trigger a new revolution in neuro-
science in the same way as Ramón y Cajal did, and the two are in no way mutually
exclusive. Whereas computation might happen at the dendrites, each neuron will
surely belong to several microcircuits and the specificity could happen in the den-
drites. The neuron acting as a parallel processor, and each branch submitting tasks
in parallel.

The two aforementioned projects are also bringing neuroscience into the new
century and pushing scientists into novel and unexplored territories. The Human
Brain Project, that aims to “achieve a unified, multi–level understanding of the
human brain” by generating the most detailed simulation of the human brain to
date, is also gathering data at an unprecedented level of detail from the brain. By
coordinating across many labs around the globe, the project is also unifying the way
in which neuroscience data is recorded and shared, from the molecular level (starting
by the gene expression of molecular channels) up to whole-brain activity. Even if
the project might not reach its long-term goals [Fregnac 2014], neuroscience as a
whole will benefit greatly (as well as other disciplines, like computer science, with
the development of novel neuromorphic and neurorobotic technologies inspired by
the brain). The other macro project, the BRAIN Initiative, aims to accelerate the
development and application of innovative neurotechnologies focusing on brain
research. A special emphasis is put into imaging the in vivo brain to open new doors
to explore how the brain handles information, both in health and in disease. In their
own words, “there’s a big gap between what we want to do in brain research and
the technologies available to take us there”.

With the current state of affairs in neuroscience, physicists are in an excellent posi-
tion to contribute. The announced macro projects as well as the latest developments
in technology are evolving neuroscience into a discipline more interdisciplinary
and quantitative than ever before, and that is something where physicists excel at.
There is also the rising need of new and fundamental theories that can explain brain
behavior at a new level of complexity. The extremely high amount of data that
is going to be collected in the following years (the mouse connectome is already
generating of the other of petabytes worth of data [Lichtman 2014]) is going to
become unmanageable soon and reducing it to a convenient level will be required,
as well as new theories and ways to work with it.

2 The importance of the dendrites for computation, however, has been known for a while
[Yuste 1996].
3 The microcircuit has to be understood as a set of neurons and synapses performing a specific
task, in a similar fashion as logic gates in electrical circuits.
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1.2 Neuronal cultures, at the interface of physics and
neuroscience

Physicists are also contributing to neuroscience at a more fundamental level, unrav-
eling universal principles governing all brains (not just the human one) and nervous
tissue in general. It is not only the human brain that poses a mystery, it is fair to
say that we have not yet solved the inner workings of any “brain”, not even the C.
elegans4 nervous system.

There are many branches of physics involved in tackling problems in neuroscience:
network theory and phase transitions has been used to study the C. elegans con-
nectome [Arenas 2009, Nicosia 2013]; self-organized criticality has been able to
explain cortical dynamics [Beggs 2003, Beggs 2004]; stochastic processes have
shed new light into the brain resting state [Deco 2011], etc. But if there is one
platform or device where physics can contribute the most to neuroscience, it has to
be neuronal cultures. Neuronal cultures are the harmonic oscillator, the hydrogen
atom, of neuroscience. Simple, yet powerful enough, controlled systems to test
theories and hypothesis. Not as complex as a brain (or one of its parts), but rich
enough to show many different complex behaviors, it might be one of the keys to
unravel some of the mysteries of the brain.

Neuronal cultures consist of many neurons (ranging from dozens to millions) grown
together in the lab, usually in a petri dish. Typically these neurons come from
pre-natal embryos and are dissociated from the original tissue, by either mechanical
or chemical manipulation. The neurons are then incubated in growth medium for
several days, during which the neurons migrate, grow and try to form connections
with their neighbors. These neurons are also electrically active, evolving from
an initial stage of silence or individual spontaneous firing to later stages of self–
organized collective spontaneous firing or even more complex activity patterns.
The neurons in a culture belong to many families of neuronal types, but the two
main groups are defined by their excitability and they can be either excitatory or
inhibitory; the first promoting activity on their neighbors and the later hindering it.

The term neuronal culture is quite broad, and can lead to confusion if one is not
careful. Cultures can come from many different animals (rat, mice, ferret, locust,
...), from different brain areas (spinal cord, cortex, hippocampus, ...), from different
preparations (dissociated and organotypic), as well as from different developmental
stages (pre and postnatal), and even derived from stem cells. Although they share
many similarities, there are also many differences. Spinal cord cultures show the
presence of peacemaker cells, whereas cortex and hippocampus do not; organotypic
cultures have connectivity profiles similar to those found in the brain5 whereas
dissociated ones do not; cultures derived from stem cells are barely active sponta-

4 Caernorhabditis elegans has one of the simplest nervous systems, composed of only (and
exactly) 302 neurons distributed along its body.
5 But not quite [De Simoni 2003].
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neously, etc. Unless otherwise specified, the results presented in this thesis focus
on neuronal cultures dissociated from the cortex of Sprague-Dawley rat embryonic
brains of 18-19 days of development.

Neuronal cultures are an invaluable tool to study both physics and neuroscience at
the same time. For physics, it provides a well-controlled non-equilibrium system
that self-organizes and is composed of a complex network of interacting non-linear
units. One can use them to study synchronization mechanisms [Baruchi 2008],
percolation [Breskin 2006], criticality [Tetzlaff 2010], self-organization during
development [Pu 2013], noise [Orlandi 2013], network theory [Teller 2014], net-
work reconstruction [Stetter 2012], and even use them to build neuromorphic de-
vices [Feinerman 2008]. In neuroscience they can be used to study development
[Soriano 2008], plasticity [van Pelt 2005], oscillations [Czarnecki 2012], the micro-
connectome [Shimono 2014], and also use them as a platform for drug development
and testing in toxicity [Frega 2012] and neurodegenerative diseases [Huang 2012]
(see Figure 1.2 for some illustrative examples). The multidisciplinary use of cultures
is quite new however, and a closer look at their history can shed some light on their
advantages and shortcomings.

1.3 A brief historical review on neuronal cultures

In the mid 2000s, when terms like interdisciplinary sciences, complex systems and
self-organization reached widespread popularity, in vitro neuronal cultures emerged
as a successful model system of neuronal activity, specially for the physics, bio-
physics and systems neuroscience communities; general physical principles behind
the collective dynamics of neurons have been elucidated within this framework
[Beggs 2003, Feinerman 2005, Soriano 2008]. The use of neuronal cultures in clas-
sical neuroscience, however, is nothing new, already in the 1950s, cell cultures
(both dissociated and organotypical) were being studied, although their utility was
always considered marginal, see [Nelson 1975] for a complete review.

Why did it take almost fifty years for neuronal cultures to become widely used
and recognized as a useful tool? The answer is already on Nelson’s review “[. . .]
The close association and interaction between cells are rigorously interrupted as an
integral aspect of the dissociation procedure; this may have some experimentally
attractive features, but it is a catastrophic intervention”. Classical neuroscience and
neurobiology disregarded cultures as a useful tool for understanding brain dynamics
and neuronal activity for a long time, they were mainly used to study single or
pairwise neuron properties and dynamics; quoting Nelson again “for the study of
a number of important anatomical, physiological and biochemical properties of
neurobiologic interest”.
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Figure 1.2 The physics of neuronal cultures. a, Percolation. Fraction of neurons that fire
in a culture vs an applied external current for different concentrations of CNQXa, a drug that
debilitates the connections. The giant component forms at a critical value, denoting a phase
transition. Repr. with perm. [Soriano 2008]. b, Criticality. Probability distribution of avalanche
sizes in an organotypic cortical culture for different binning sizes, denoting a sweet spot of
critical behavior with a characteristic exponent of α = 3/2. Repr. with perm. [Beggs 2003]. c,
Neuromorphic devices. Equivalent of logic gates built from neuronal tissue. Top left: AND gate.
Bottom left: threshold component. Middle: three diodes coupled together. Right: a clock built from
many diodes, the signal can only travel counterclockwise. Repr. with perm. [Feinerman 2008]. d,
Development. Activity patterns analyzed by Principal Component Analysis across more than 100
days of culture development. The system self-organizes and evolves continuously in phase space.
Repr. from [Pu 2013] cbn. e, Network theory. Network reconstruction and characterization
through its dynamics in cultures of highly clustered networks. Top: two characteristic examples of
the real tissue. Bottom: the reconstructed network. Repr. from. [Teller 2014] cb.

a 6-cyano-7-nitroquinoxaline-2,3-dione.
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It took twenty years since the first studies with cultures, for the development of
experimental techniques capable of recording simultaneously activity of many
neurons; and twenty more for them to mature and become easily available to in-
terdisciplinary laboratories. Multi–unit recording of neuronal activity in cultures
has evolved through two different techniques: multielectrode arrays (MEAs) and
calcium imaging, both implemented in the 80s. Before that, most activity record-
ings were based on the patch–clamp technique, first using on–cell patch mode
[Neher 1976] and later as whole–cell recordings [Hamill 1981, Fenwick 1982], e.g.
[Hirano 1986].

1.3.1 Multielectrode arrays

The typical MEA preparation for cultures consists of a glass coverslip on which
a thin–film microcircuit has been deposited. The microcircuit contains an array
of microelectrodes that are directly in contact with the neurons or the medium
and are able to record changes in extracellular currents. The first MEA in dis-
sociated cultures can be traced back to [Pine 1980]6 and consisted of 32 elec-
trodes of 8x10 µm in area. The most common MEAs used in the present day7

remain basically unchanged, consisting of 64 electrodes of 30 µm diameter spaced
200 µm apart, e.g., [Beggs 2003, Jacobi 2007, Czarnecki 2012]. Newer setups,
however, are actively being developed, from high–density MEAs with 512 record-
ing sites [Litke 2004, Ito 2014] to multi-transistor arrays based on CMOS8 tech-
nology presenting up to 11,011 [Frey 2009], 16,384 [Lambacher 2011] and 32,768
[Eversmann 2011] recording sites, reaching subcellular resolution with densities
between 3,000 and 12,000 transistors/mm2 (see Figure 1.3).

The electrodes in standard MEAs record the local field potential (LFP) produced
by the various neurons in its vicinity and by crossing neurites. Spikes are easily
inferred from sharp changes in the LFP, where each electrode is usually able to
detect spikes from 1 to 3 neurons via spike sorting algorithms (see [Lewicki 1998]
for a review). MEAs recordings accurately detect spikes with sub–millisecond
resolution, however, they are only able to record activity from a small subset
of the whole population (see Figure 1.3a for a visual estimate of the amount of
neurons present between electrodes) and usually only in a small region of the culture,
typically in a 2x2mm area while cultures usually span 13 mm in diameter. Although
high–density MEAs and CMOS chips are able to overcome its main limitation
(spatial sparsity), its technological development still presents some challenges and
we might need another decade for them to become the new standard.

6 The first MEA, however, was presented in [Thomas 1972] for heart cells.
7 MultiChannelSystems, Reutlingen, Germany.
8 Complementary metal-oxide-semiconductor
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a b

200 µm

Figure 1.3 Multielectrode Arrays (MEAs). a, Standard MEA configuration, central view of an
8x8 electrode grid for a high density culture 1 day after plating. Repr. from [Wagenaar 2006a]
cb. b, Snail neuron on a CMOS chip in culture. There is a 200-fold increase in electrode density
respect to the standard MEA configuration. Repr. from [Eversmann 2003] ©2003 IEEE.

MEAs have been an extremely successful in the study of collective neuronal activ-
ity, specially in culture development [Van Pelt 2004a, Wagenaar 2006a], neuronal
avalanches [Beggs 2003, Beggs 2004], self–organized criticality [Pasquale 2008,
Tetzlaff 2010], memory [Dranias 2013], and oscillations [Czarnecki 2012] to name
a few. They have not been able, however, to shed much light in the precise spatial
structure of the activity patterns, and the only studies that dealt with it were either
based on acute slices [Tscherter 2001, Compte 2003], one–dimensional systems
[Jacobi 2007] or, surprisingly, the first MEAs studies on cultures [Robinson 1993,
Maeda 1995], mostly because their “primitive” setups had a much higher intra–
electrode distance and were able to observe activity at much larger distances. New
studies related to the internal network structure (or the microconnectome) are also
starting to appear [Shimono 2014], and go in the same direction as the main results
presented in this thesis.

1.3.2 Calcium imaging

Standard calcium imaging techniques in neuroscience are based on the fact that
calcium is one of the main signaling molecules in neuronal activity; amongst
others, it is involved in spike generation via voltage-gated channels and internal
stores, and also in synaptic transmission via AMPA9 and NMDA10 receptors, which
are calcium-permeable when bound with glutamate (see [Grienberger 2012] for a
review). The main idea is to obtain a molecule that when bound to a calcium ion,

9 α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid.
10 N-Methyl-D-aspartate.
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fluoresces with a characteristic wavelength and is recorded with an external device,
like a CCD11 camera or a photomultiplier.

Although the first calcium indicators date back to the 60s and were based on
bioluminescent photoproteins [Shimomura 1962, Ashley 1968], it took 20 years of
continuous improvements to achieve an indicator good enough for mainstream use,
fura-2 [Grynkiewicz 1985], a chemical indicator. Nowadays there is a wide variety
of calcium markers being used in neuroscience, from whole cell chemical indicators,
like Fluo-4 [Gee 2000] and Rhod-2 [Minta 1989], to genetically encoded ones, like
the GCaMP family [Nakai 2001]. The choice of indicator depends on many factors,
but usually on the area of study (culture, single cell, or intracellular) and on the
visualization and recording instrument, photodiode array, CCD camera, confocal or
two-photon microscope, etc.

Despite the growing complexity in calcium imaging research, its main protocol
for in vitro neuronal cultures has not changed much in the last decades. A solution
containing the fluorescence dye (fura-2 at the beginning, and fluo-4 nowadays)
is introduced in the culture well before imaging. After incubation, the culture is
transfered to the imaging device (mostly a microscope) for recording. The culture is
lit with a light source through a dichroic mirror and the fluorescence response of the
molecule is recorded (usually with a CCD camera). During the incubation period,
the fluorescence molecules are absorbed by the neurons, and since they already
contain calcium, some of the molecules bind to the calcium ions and produce a
fluorescence response at rest. When the neuron is actively firing, however, there’s
a 2-fold increase in calcium concentration inside the cell, which produces a sharp
increase in the response signal. One of the interesting things about calcium imaging
is that the binding rate of the marker to calcium is much higher than the unbinding
rate, so it accurately identifies the time point when a response is triggered and also
allows recording at slow speeds, since the unbinding is slow.

This imaging protocol was already being used right after the development of fura-
2 to study neuronal excitation in hippocampal cultures, although at the single
cell level [Kudo 1986]. The first results on spontaneous activity appeared just a
year later [Ogura 1987] (see Figure 1.4a). Almost 30 years later, the recordings are
essentially the same (see Figure 1.4b), although current setups allow for much higher
recording speeds at bigger areas and with a better fluorescence yield [Stetter 2012,
Orlandi 2013].

Beyond the scope of neuronal cultures however, calcium imaging has dramat-
ically changed in the last decade. New imaging technologies, like two-photon
[Svoboda 2006] and laser-scanning light-sheet [Keller 2008] microscopy, coupled
with new genetically encoded markers allows an unprecedented level of detail in
visualizing the brain, both in in vitro and in vivo preparations. These techniques are
non-invasive and capable of recording whole brain activity at the single cell level,
the state of the art being more than 80% of all the neurons in the larval zebrafish

11 Charge–coupled device.
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Figure 1.4 Calcium imaging. a, Left, one of the first calcium traces recorded at the single
neuron level showing a burst event, in which the neuron fires multiple times in short succession.
The signal shows the characteristic fast amplitude increase when calcium binds to the marker,
followed by a slow decay due to the unbinding dynamics. Right, simultaneous recording of three
different neurons, showing several coupled, synchronized events. Repr. with perm. [Ogura 1987].
b, Left, fluorescence traces recorded more than 20 years later, showing six simultaneous neurons
of the hundreds being recorded. Right, area showing a partial view of all the neurons being
monitored, (top) bright-field image, (bottom) fluorescence image. Repr. from [Stetter 2012] cb.
c, Whole-brain imaging of the in vivo larval zebrafish via high–speed light–sheet microscopy,
where more than 80% of all the neurons are recorded. Left, the recorded activity is averaged over
different brain areas (numbered). Right, area–averaged traces in a 30min window. Repr. with
perm. [Ahrens 2013].
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brain in vivo at 0.8Hz [Ahrens 2013] (see Figure 1.4c). They are also the inspiration
behind the Brain Initiative, the US funding initiative launched in 2013 to develop
novel techniques in brain research [Shen 2013].

1.3.3 Multi–unit recordings of spontaneous activity

The first studies on dissociated cultures focused on morphology and electrophysiol-
ogy recording two to three neurons at most (see for example [Dichter 1978]), and
later expanded to more robust and quantitative studies involving firing patterns of
spontaneous activity [Habets 1987] but still monitoring one neuron at a time. Al-
though at the same time calcium imaging was being used to simultaneously record
various neurons [Ogura 1987], the results were mostly qualitative. It still took a few
years for the first robust results on simultaneous recordings of spontaneous activity
to appear, both using calcium imaging [Murphy 1992] and MEAs [Robinson 1993].
By combining early MEAs (4x4 electrodes), calcium imaging and patch–clamp
recordings, Robinson and coworkers were able to simultaneously record from dif-
ferent neurons and observe culture–wide periodic bursting, synchronized calcium
transients, activity propagation throughout the system and prove that these events
had a synaptic origin. This study was later expanded by the same group in a seminal
paper [Maeda 1995] that focused on the mechanisms of generation and propagation
of synchronized bursting events by using one of the first modern MEA setups (8x8
array) although with a much larger intra–electrode spacing than in current devices.

Maeda and coworkers showed that the activity of developing cultured cortical
neurons was dominated by bursting episodes in a narrow frequency band that prop-
agated throughout the system. The localization of the burst onset varied randomly
from burst to burst and appeared spontaneously. Their results suggested that the
bursting behavior was governed by the level of spontaneous presynaptic firing, the
connectivity of the network and the balance between excitability and recovery of
the system. It took many years, however, for some of their hypothesis to be verified,
both theoretically and experimentally, and is a central focus of attention for this
thesis (see Chapters 2 to 5).

Although Maeda and coworkers observed that bursts originated at specific spots of
the culture and propagated, almost no other group followed this line of thought, and
focused mostly on analyzing the bursts as a synchronization process [Segev 2002,
Opitz 2002, Segev 2004, Wagenaar 2006a]12. The studies that analyzed activity
propagation started on one–dimensional cultures, where things are much simpler to
understand.

12 Surprisingly, this might be due to a technological improvement. Their MEA had a much smaller
intra–electrode distance than Maeda’s original setup and hence were looking at much smaller
regions. What appears to be a propagation event can show up as synchronized and unlocalized if
the region of observation is small enough.
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a

b

Figure 1.5 Activity propagation in cultures. a, Left, electrode recordings at eight specific sites
from Maeda’s original work showing six network bursts. Right, schematic representation of the
MEA setup. Notice the 1mm separation between electrodes, whereas more modern setups have a
separation of 0.2mm (see Figure 1.3a). b, Left, relative (to electrode 8) delays on activity onset for
different electrodes across nine consecutive bursts. Right, schematic representation of the different
propagation patterns across the electrodes. Repr. with perm. [Maeda 1995].

1.3.4 One–dimensional cultures and neuronal models

One–dimensional cultures (1D) consist on neurons grown on a very thin line
(∼ 170 µm thick), forcing the axons and dendrites to grow in just one possi-
ble direction. These lines are created by a combination of chemical coatings
and mechanical scratching so that the neurons can only grow in these lines
[Feinerman 2003, Feinerman 2005]. With a calcium imaging setup they were able
to grow neurons in lines up to 16 mm long (and later up to 8 cm, see Figure 1.6),
much longer than the typical axonal length (∼ 0.8mm) in these systems. They were
able to observe that activity originated in specific sites of the culture called burst
initiation zones (BIZ), usually correlated with high density areas. Activity started by
asynchronous firing at slow velocities (∼ 20mm/s), and later developed into a full
wave with higher velocities (∼ 80mm/s) propagating throughout the system. There
was a clear dependence on propagation velocity and frequency with the number of
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Figure 1.6 One–dimensional cultures. a, Left, single culture compose of a single thin line 8
cm long. Repr. with perm. [Feinerman 2006]. Middle and right, details of the same line at two
levels of detail where the cell bodies can be observed. Repr. with perm. [Eckmann 2007]. b,
Two examples of propagating waves obtained from the theoretical model that explains the two
propagation velocities along an one–dimensional culture. First, a phase of sparse and asynchronous
firing (yellow) that starts in a narrow region and later a well-defined traveling wave (red). Color
encodes the number of firings per unit area. Repr. with perm. [Alvarez-Lacalle 2009].

excitatory connections and their strength as well as with the excitation–inhibition
balance present in the system [Feinerman 2005, Feinerman 2007].

1D cultures were also used to study information transmission and coding. It was
shown that these lines act like a chain of Gaussian communication channels al-
though it was found that rate codes could not be reliably transmitted through these
network structures [Feinerman 2006]. These lines were later used also as a proof of
concept to build neuromorphic devices based on tissue equivalents of logic gates
[Feinerman 2008]. By playing with the width and the shape of the lines they were
able to build threshold devices, AND gates, diodes and even a clock using a closed
sequence of diodes (see Figure 1.2d).

Many of the characteristics of the activity propagation in 1D cultures could be
explained by theoretical models of spatially structured activity in integrate–and–fire,
synaptically coupled neurons [Pinto 2001, Osan 2004]. These models analyze the
propagation of traveling fronts and pulses in neuronal networks by describing the
system as an excitable medium. In this description, a potential u(x, t) describes the
activity profile for every point x along the line in time t and is governed by the
following equation
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τ
∂u(x, t)

∂ t
=−u(x, t)+

∫
J(|y− x|)∑gsyn exp

(
−

t− t i
f

τsyn

)
Θ(t− t i

f )dy, (1.1)

where τ is the membrane time constant, J an arbitrary function describing the
connectivity profile that depends only on the relative distance, gsyn the synaptic
strength, τsyn the synaptic time constant, Θ(x) the Heaviside step function, t i

f the
time of a presynaptic firing, and the sum goes over all spikes in all synapses. This
system can be solved in the linear regime and predicts two different propagating
velocities, as in the experiments. The slow velocity however, is an unstable solution,
rather than metastable, as the experiments would suggest [Feinerman 2005]. Also,
it was shown that a similar system could withstand a complete set of different
velocities when a more complex neuron model was considered [Golomb 1997].

With that in mind, Alvarez-Lacalle and coworkers explored discrete neuron models
that would be able to explain the experimental data [Alvarez-Lacalle 2009]. They
found that the minimal model required to explain the observed 1D dynamics was
an adaptive quadratic integrate and fire with depression in the synaptic dynamics.
This neuron model is also known as the Izhikevich model [Izhikevich 2003], which
in its complete form can be expressed as

Cv̇ = k(v− vr)(v− vt)−u+ I if v≥ vpeak, then
u̇ = a{b(v− vr)−u} v← c, u← u+d, (1.2)

where v and u are functions of time that represent the membrane potential and
a recovery current respectively. C is the membrane capacitance, vr the resting
membrane potential, vt the instantaneous threshold potential and I the input currents.
k and b are model parameters that can be derived from the rheobase and the input
resistance of the neuron (see [Izhikevich 2007] for more information). a is the
recovery current time constant, vpeak is the spike cutoff value, c the voltage reset
value and d describes the total amount of currents activated during the spike and
affecting after-spike behavior. The left arrow← denotes an instantaneous change
of the variables on the left by the right value.

The Izhikevich neuron model is canonical for most real neuronal families, i.e., it can
accurately reproduce the behavioral traits of many neurons, and in some cases with
a precision comparable to more complex current based models like the Hodgkin
Huxley [Izhikevich 2007] (see Figure 1.7). The model only accounts for the neuron
response dynamics, and the description of the synaptic dynamics that mediates the
coupling between different neurons requires a complementary description.

Neurotransmitters are stored in vesicles at the synapses, and these vesicles can
belong to different pools with different availabilities for release. The vesicles of
the readily-releasable pool (RRP) fuse with the external cell membrane after an
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Figure 1.7 The canonical model. a, Comparison of the activity response of a rat motor cortex
layer 5 pyramidal neuron in vitro with the model from Section 1.3.4. Excitatory and inhibitory
currents for the neuron are generated using an Ornstein-Uhlenbeck stochastic process and applied
using the dynamic clamp protocol [Sharp 1993]. Top: the neurons response. Bottom: the simulation
response to the exact same input currents. b, Magnification of a small region from a. The model
shows a reasonable fit to the experimental data reproducing over 90% of all the spikes. c, The
input currents applied to the neuron and the model. Repr. from [Izhikevich 2007] under MIT fair
use policy.

action potential (mediated by a calcium signaling pathway) and release the neuro-
transmitters at the synaptic cleft. These neurotransmitters bind to specific receptors
at the postsynaptic terminal producing a signal that travels through the dendritic
tree. The kinetics and the dynamics involved in these processes is what is known as
synaptic dynamics (see [Stevens 2003, Collingridge 2004, Rizzoli 2005] for more
detailed information). In a simplified version the total amount of neurotransmitters
available in a synapse is conserved on small time scales, and they can be found in
three possible states: recovered (ready to be released), active (bound to the receptor)
and inactive (unbound and being recycled).

Regarding synaptic dynamics, it has been observed that short-term synaptic depres-
sion (STD) plays a pivotal role in the dynamics of cultures [Cohen 2011], although
their importance in slices and in vivo during activity is not so clear [Reig 2006]. STD
represents the depletion of available neurotransmitters due to repeated activity at the
presynaptic terminals. Although there are many models of STD (see [Zucker 2002]
for a review on short-term synaptic plasticity), the classical description of STD
comes from the seminal work of Tsodyks and Markram [Tsodyks 1997], whose
model can be expressed13 as

13 Although the original model was a little more complex
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Ṙ =
1−R−E

τR
−U∑

t f

R(t f )δ (t− t f )

Ė = −E
τI

+U∑
t f

R(t f )δ (t− t f ), (1.3)

where R and E are functions of time for the fraction of neurotransmitters found in
the recovered and active states respectively. τR and τI are the characteristic times of
recovery and inactivation respectively, U is the fraction of neurotransmitters that
become activated after an action potential14 and the sum goes over all past spikes t f .
With the synapse at rest, all available neurotransmitters are in the recovered state,
but after an action potential a fraction U transitions into the active state inducing a
post-synaptic current (PSC) until they become inactivate, and are later recovered.
This induced current usually has the form of an alpha function or an exponential
for simplicity. Hence, the total current a neuron receives can be seen as directly
proportional to the amount of neurotransmitters in the active state E times the
synaptic conductance g.

The classical STD description can, however, be simplified into a single depression
variable D that models the efficacy of the synapse [Alvarez-Lacalle 2009]. At
rest D = 1 and after a spike it drops to a value of βD with β < 1 representing
neurotransmitter release. After the drop, the variable recovers exponentially to its
resting value or until a new spike, i.e.,

Ḋ =
1

τD
(1−D)−∑

t f

(1−β )Dδ (t− t f ), (1.4)

where τD is the recovery time constant. The input current a neuron receives from a
given presynaptic pair can then be expressed as

I(t) = g∑
t f

D(t f )exp

(
t− t f

τg

)
Θ(t− t f ), (1.5)

where τg is the characteristic time constant of the synaptic current.

The Izhikevich model with STD is not enough to explain the observed dynamics
in 1D cultures by itself. For the model to be complete there are still two missing
ingredients: noise and the connectivity profiles. Alvarez-Lacalle and coworkers

14 We do not consider any form of facilitation, where U would have its own dynamics. In cultures,
facilitation plays very little role.
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did not consider any noise source, given that they were interested only on activity
propagation, and not on spontaneous generation, their protocol manually stimulated
the neurons until the activity could be self-sustained. Hence they did not need to
consider any of the possible sources of noise in the system.

Regarding connectivity in 1D systems, it is quite straightforward, axons and den-
drites can only travel in one direction and the only relevant variable is distance.
In their study, they considered only a dependence on axonal length: they estab-
lished a connection with probability α from neuron i to neuron j if neurons i axon
overlapped with neuron j, i.e., 0 <

x j−xi
±l ≤ 1, where the sign denotes if the axon

grows towards the positive or the negative axis and l is the axon’s length of neuron
i (drawn from a Gaussian distribution). For cultures of higher spatial complexity
than 1D, the connectivity profiles play an extremely important role, and have to be
considered in detail.

1.3.5 Clustered and patterned cultures

Although many interesting results have arisen from 1D studies, their connectivity is
too far off from the one encountered in the brain to try to extrapolate the findings to
neuroscience; hence several groups have tried to work with cultures with increasing
levels of complexity in connectivity, which consist of cultures grown in a two–
dimensional substrate but with a constrained topology.

When neurons are cultured without any treatment to the substrate, i.e., the petri
dish, at a high enough density, the neurons tend to aggregate to each other and form
clusters. Each cluster consists of many neurons (up to several thousands) with their
somas touching each other. Each neuron inside the cluster tends to grow its axon
in the same direction as their neighbors extending up to other clusters, creating
axonal ’highways’ that interconnect the clusters and form a network with a topology
extremely different from the ones reported in 1D and 2D systems.

The first report from this kind of clusters comes from E. Ben-Jacob’s group
[Segev 2003]. Their study however, did not focus on connectivity nor in activity.
They were interested in the self–organization principles behind clustering formation,
involving neuronal migration and growth. The same group also developed tech-
niques to confine neurons in specific geometries, mostly by anchoring the neurons to
the substrate with diverse methods, e.g., using poly–D–lysine or carbon nanotubes
[Sorkin 2006, Sorkin 2009]; they also looked at activity in clusters and found that
as few as 40 neurons were enough to sustain spontaneous collective activity and
that activity between clusters propagated with a master/slave asymmetry. At the
same time, the group of M. Segal started working with micro–cultures, i.e., cul-
tures consisting of 4–30 neurons and found that those small systems could already
develop collective spontaneous activity [Cohen 2011]. J. Soriano’s laboratory also
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started working with clusters, but with a focus on network theory and the under-
lying physical principles [Teller 2014] (see Figure 1.2e); although interconnected
clusters appeared to fire synchronously, by analyzing the activation sequence with
high–speed calcium imaging they were able to resolve the underlying functional
network that drives the activity, and found dynamics much richer than master/slave
configurations.

In parallel with the development of clustered cultures, several groups started to
modify the substrate properties for the homogeneous cultures as well. In fact, a 1D
culture is already an example of a patterned culture, and also the neuronal logic
devices implemented in E. Moses’ group [Feinerman 2007]. The construction of
these setups, however, is quite complex and artisan, and does not scale well to more
complex patterned structures. The cultures from E. Ben-Jacob’s lab also involved
patterning; on homogeneous cultures they focused on analyzing master/slave config-
urations by growing two cultures separated by a physical barrier but interconnected
by a narrow bridge [Baruchi 2008]. The group of J. Pine also tried patterning, but
with the idea of studying the evolution of very small networks by caging individual
neurons [Erickson 2008].

In J. Soriano’s laboratory they took a different approach to patterned cultures; they
built cultures with patterns inspired by previous experiments with Hele–Shaw flows
with quenched disorder [Hernández-Machado 2001, Soriano 2002]. The culture
substrate is coated with a photosensitive Polydimethylsiloxane material (PDMS)
and a photoresistive mask with the desired disorder pattern is placed on top (initially
the pattern consisted of a set of squares distributed randomly, but more complex
forms have also been achieved). The sample is then lit with UV light to generate
a two–level culture. The bottom level corresponds to the glass coverslip and the
top level to the PDMS part that was masked during UV exposure (see Figure 1.8).
The result of this technique is that neurons only grow in one of the two possible
levels, making the other areas inaccessible. This way it is possible to create custom
geometries to study culture dynamics in detail. By using a disordered pattern like
the one presented in Figure 1.8 enables the study of the dynamics in the transition
between 1D to 2D systems.

1.3.6 Collective dynamics in two–dimensional cultures

In parallel with the studies in confined geometries, several groups directly analyzed
both spontaneous and induced activity in homogeneous two–dimensional (2D)
cultures with many different approaches, and altogether, a unified view is emerging.

Using percolation theory and electrical stimulation, Soriano and coworkers were
able to explain with great detail the developmental stages that undergoes a culture
until maturation [Soriano 2008]. When neurons of embryonic brains are placed in
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125 μm
250 μm

Figure 1.8 Patterned cultures. Two examples of neuronal cultures patterned with PDMS and
random disorder. The neurons grow preferentially in only one of the two levels, although the
technique is not perfect. Repr. with perm. [Popiel 2009] ©2009 J. Soriano.

a culture they are not electrically active for the first two days; the neurons, however,
start to migrate and grow projections to try and connect with their neighbors. After
2 days in vitro (DIV) a network starts to form and the neurons become responsive to
electrical stimulation. At 3 DIV they already show signs of collective behavior after
stimulation, and start to respond together, albeit in disconnected clusters; they also
become spontaneously active although in this case the firings are still isolated. At
day 4 the network is already fully connected and all neurons in the system respond
at the same time to stimulation. Although cultures are composed of both excitatory
and inhibitory neurons, GABA15, the main inhibitory neurotransmitter, behaves as
excitatory in early stages of development [Ganguly 2001]. It is only after 9 DIV,
when the GABA–switch takes place, that inhibition appears.

During the GABA–switch the whole network becomes spontaneously active and is
characterized by the presence of network–wide bursts, where all neurons seem to
fire together at the same time; the bursts are followed by periods of silence with
neurons barely firing. This bursting regime is robust and can last for several weeks;
although it is the hallmark of cultures, it is also present in the brain, specially
during the development of specific neural circuits, including the cerebellum, the
spinal cord, the cochlea and the retina amongst others (see [Blankenship 2010] for
a review). For example, during the formation of the ferret’s retina, spontaneous
activity is key for the development of ocular dominance columns and binocular
receptive fields [Huberman 2006] and that blocking retinal waves causes long–term
impact on receptive field size [Failor 2015]; in the chick spinal cord spontaneous ac-
tivity has behavioral implications in motility [Provine 1972] and activity-dependent
depression triggers long lasting synaptic reorganization [Fedirchuk 1999].

Van Pelt and coworkers studied the long–term stability of network bursts and ob-
served irregular changes in the dynamics during development, with an increase
in burst duration and frequency until 20 DIV, which was followed by a posterior

15 α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid.
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decrease. After 1 month in culture the bursts appeared to be almost instantaneous
[van Pelt 2004b, Van Pelt 2004a] and showed activity patterns that resemble cas-
cades of activity, suggesting a possible correspondence to critical behavior. At the
same time D. Wagenaar and coworkers performed an extensive study on activity
patterns up to 40 DIV with various cell densities, ranging from ultra sparse to dense
cultures. They reported an “extremely rich repertoire” of activity patterns with a
very high heterogeneity from culture to culture [Wagenaar 2006a] (see Figure 1.9).

Regarding the mechanisms behind burst initiation, the group of S. Marom used
MEAs to discover that the sequence of neuronal activation within a burst is non–
random and hierarchical, where a small subset of neurons, were consistently active
before others [Eytan 2006]. They theorized that an underlying scale–free topology
might be behind the underlying process. In a similar direction, a posterior study with
data from three different laboratories [Eckmann 2008] also reported the possibility
of the presence of leader neurons, with an underlying sub-network that might
be activated first and posteriorly recruit neurons in their neighborhoods. This
idea was later explored theoretically within the framework of quorum percolation
[Eckmann 2010].

1.3.7 Criticality and self–organized criticality

In 2003 and 2004, J. Beggs and D. Plenz published a couple of papers that spanned
a new area of research of criticality in neural systems16 [Beggs 2003, Beggs 2004].
They observed that activity in organotypic cultures and slices from rat cortex
were dominated by activity episodes of variable sizes (avalanches). They found
that the distribution of sizes followed a power–law behavior with a characteristic
exponent of α =−3/2 which could be related to the theory of branching processes.
The distribution of times also followed a characteristic exponent and a branching
parameter σ , could be defined and found to be close to 1, all hallmarks of a system
in a critical state. They also found that the spatio–temporal patterns formed by
these avalanches formed a characteristic subset and were robust and stable for many
hours, being a possible substrate for memory. These avalanches also had the correct
structure for information transmission [Beggs 2008]. A later study [Friedman 2012]
provided more proof of criticality by showing that the avalanches temporal profiles
can be described by a single scaling function, and the different anomalous exponents
defined by

f (S) ∼ S−τ ,

f (T ) ∼ T−α ,

〈S〉(T ) ∼ T 1/σνz, (1.6)

16 Although several authors had already suggested it theoretically for both neural systems and the
brain [Corral 1995, Eurich 2002, Chialvo 2004].
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Figure 1.9 Repertoire of spontaneous activity patterns in 2D cultures. a, Classification of the
different activity patterns observed in developing cultures, characterized by their density (y axis)
and age (x axis). The patterns are classified by their burst profile and average frequency. A wide
variety of patterns coexist with very little correlation, specially in dense cultures. b, Examples of
various activity patterns, characterized by their average spiking rates (top) and raster plots (bottom)
for 5 min samples. The most recurring activity pattern in dense cultures consists of a fixed or
variable distribution of bursts with a low frequency, i.e., < 1/3 min (blue and green squares).
Superbursts, however, also appear quite frequently in dense cultures. In small and sparse cultures,
the most recurring activity pattern is either no activity, or bursts with a variable distribution. Repr.
from [Wagenaar 2006a] cb.
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follow the predicted scaling behavior. f (S) and f (T ) are the distributions of
avalanche sizes and durations respectively and 〈S〉(T ) the expected avalanche
size for a given duration. τ , α , σ , ν and z are the characteristic exponents17, and
they obey the following relationship

α−1
τ−1

=
1

σνz
. (1.7)

By collapsing the experimental avalanche curves they found the predicted exponent
relations and the universal scaling function F for the datasets that showed signs of
criticality (see Figure 1.10).

Probably inspired by these results and also from the results of J. Van Pelt and D.
Wagenaar, several groups have been looking for signs of criticality in dissociated
cultures. Mazzoni and coworkers showed some power–law distributions on burst
size and duration in the leech and hippocampal cultures [Mazzoni 2007], suggesting
a critical regime. Simultaneously, V. Pasquale and coworkers analyzed culture mat-
uration under the same perspective [Pasquale 2008], and observed developmental
changes from a sub–critical regime to a super–critical and finally a critical one,
suggesting that the fate of the culture is “to reach a critical state”. Similar results
have also been reported from other groups [Tetzlaff 2010, Pu 2013]. Although it is
not yet clear what mechanism mediates these developmental changes, it is apparent
that the balance between excitation and inhibition in the network is a fundamental
aspect, and any disruption in the balance shifts the system away from the critical
regime, e.g., blocking NMDA receptors with APV18 or blocking GABA receptors
with bicuculline.

At the same time, several groups have tried to uncover from a theoretical framework
the basis of criticality in these systems. They initially correlated some critical
exponents to the ones from the theory of branching processes [Harris 1963], and
from SOC using the BTW [Bak 1987] and OFC [Olami 1992] models (see also
[Pruessner 2012]); but this explanation is nowadays not enough. In a more applied
theoretical work, T. Geisel’s group introduced the LHG model where dynamical
(depressive) synapses in an excitatory network were enough to obtain SOC in
neuronal networks with the characteristic α = −3/2 exponent when an external
drive [Levina 2007] was present; and they later found that they could replace the
external drive by introducing facilitation [Levina 2009] in the synapses.

The SOC–description of neuronal avalanches comes from non–conservative models,
where an external drive adds energy into the system, which is then released in the
form of avalanches with very different time–scales; there is also the presence of
an adaptive variable that “tunes” the system and confers it its “self-organization”,
which in the case of the LHG model is synaptic depression. All these models how-
ever, include only excitatory interactions, whereas experimental evidence suggests

17 The aforementioned α exponent is now called τ to be consistent with the original article.
18 2-amino-5-phosphonovaleric acid.
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Figure 1.10 Self–organized criticality in organotypic cultures. a, Distributions of avalanche
sizes (left), durations (middle) and its relation, recorded with MEAs in organotypic cultures near
the critical regime. b, Collapse of the avalanche shapes when rescaled with its characteristic
exponents. Each color represents a set of different durations. Repr. with perm. [Friedman 2012].

that inhibition plays a fundamental role in SOC behavior. Evidence of a convincing
excitatory–only SOC neuronal system is yet to be found.

Several groups have also developed computational models where inhibition is
present [Poil 2012], and some have even tried to establish a relationship between
critical systems and to cortical up and down states [Millman 2010, Lombardi 2012],
although their relevance is not yet clear, since what is commonly known as
cortical up and down states can not really be mapped to a SOC phenomenon
[Sanchez-Vives 2010, Ruiz-Mejias 2011]. A theoretical description that takes into
account all the experimental observations is still lacking. Developing models
with power–law–like behavior is not hard, you only need to know where to look
[Stumpf 2012, Schwab 2014].

There has also been progress in the field of SOC in in vivo MEA recordings; V.
Priesemann and coworkers showed signs of SOC in intracranial depth recordings
with varying levels of criticality from wakefulness to deep sleep [Priesemann 2013],
and they later suggested that the brain might in fact be in a sub–critical state
[Priesemann 2014]. More research is still needed, given that there are still many
problems to overcome in these recordings, specially due to finite–size sampling
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[Priesemann 2009, Yu 2014]. One has to be extremely skeptic when it comes to
critical–behavior in the brain [Beggs 2012].

1.3.8 Advances in cultures

The field of neuronal cultures is evolving rapidly, and the previously mentioned
technological advances in MEAs and calcium imaging are generating a new interest
on this field from the traditional neuroscience community. While the level of detail
that we can achieve with these recording techniques is unprecedented, the capacity
of interaction allowed by these techniques is still limited.

The most promising non–invasive technology to modify neuronal activity is op-
togenetics, which consists of genetically encoding light–sensitive ion channels in
the neuron. These channels open when lit with a specific wavelength and trigger
neuronal firing, which can be controlled with sub–millisecond precision and is
non–invasive, so it can be used both in vitro and in vivo and for extensive periods of
time (see [Yizhar 2011a] for a review). Optogenetics is one of the fastest growing
techniques being applied in neuroscience, since it enables an unprecedented level of
control at the single neuron level. It is also starting to be used in neuronal cultures,
e.g., for the modification of bursting patterns [El Hady 2013].

Another ongoing development is the creation of three–dimensional cultures to better
mimic the characteristics of the brain and their environment. The technique is based
on the creation of polymeric scaffolds or biocompatible gels where the cells can
adhere to and grow [Pampaloni 2007]. Nylon micro meshes, agarose hydrogels and
glass microbeads have been used successfully with hippocampal cultures, where
the mesh could act as a guide for neurite growth [Yoo 2011, Frega 2014]. There are
still several problems to overcome with this technique, mostly regarding recording
and visualization, but it is opening new research possibilities, specially in tissue
regeneration and on drug delivery studies.

Also promising are the recent developments in neuronal cultures from human cells.
Although one cannot harvest cells from living humans, and the use of human
embryos for these kind of studies is strictly forbidden, a gate has been opened
with stem cells. Until recently, neurons derived from induced pluripotent stem
cells (iPSCs) were barely active and could not be used for studies of neuronal
dynamics. However, it appears that this issue could finally be overcome by using
the appropriate growth medium [Bardy 2015].
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1.4 The physiology of neuronal cultures

A neuronal culture, like any living system, is a complex system integrated by a
myriad of different components and interactions. While Each of its components is
essential for the well functioning of the system, we do not need to characterize each
and every one of them to the uttermost detail to be able to understand the system
as a whole. In this section we review some of the main concepts and mechanisms
from physiology and biology that are needed to understand the behavior of neuronal
cultures, specially when it comes to spontaneous activity in two–dimensional
cultures.

1.4.1 Connectivity

Understanding the connectivity patterns between neurons is a daunting task (which
we will explore in Chapter 6), where each neuron in the living brain can make
synapses with thousands of other neurons, sometimes making several connections
with the same target. In 1986 researchers completed the full connectivity map (con-
nectome) of C. elegans [White 1986], a nematode with only 302 neurons. Its con-
nectivity map, consists of 5000 chemical synapses, 2000 neuromuscular junctions
and 600 gap junctions, and although this map is invariant, i.e., the exact connections
between neurons are always the same, it proved to be an extremely difficult task.
Recent technological advances are making it possible to scale these studies to higher
organisms, but there are still many challenges to overcome [Lichtman 2014].

Being able to obtain the full connectome from many organisms and specimens is
extremely important [Sporns 2012]. In fact, from a philosophical point of view, the
connectome is what gives every one of us our identity, our ’self’. In the words of S.
Seung, ’we are our connectome’ [Seung 2013]. From a more practical point of view,
the data obtained from connectomes is going to greatly improve our understanding
of the different wiring mechanisms that give shape to the different brain functions.
Even if ’we are our connectome’, every one of us is different, and yet, able to
function. Unraveling the different universal rules that guide synapse formation and
maintenance is the key to understanding brain function. Probably one of the most
important tasks for the neuroscience community in the upcoming decades.

In the same direction, several studies have appeared recently trying to untangle the
universal principles behind synapse formation. Q. Wen and coworkers observed
that most shapes of dendritic arbors are self–similar and can be described by an
universal functional form [Wen 2009]. At the same time, several groups have found
that the shapes of axonal and dendritic arbors and their connectivity patterns can be
described with very few parameters [Snider 2010], and also that a very simple rule
is enough to describe neuronal branching [Cuntz 2010], as well as a similar scaling
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law for optimal dendritic wiring [Cuntz 2012]. When it comes to particular brain
areas, however, things are rather more complicated, e.g., D. Bock and coworkers
found that inhibitory neurons in the cortex receive connections from the excitatory
neurons with a broad range of orientations, with a lack of specificity [Bock 2011].
At the same time, K. Briggman and coworkers found highly specific connectivity
patterns in the retina [Briggman 2011] regarding the computation of direction
selectivity.

More specifically in neuronal cultures, Müller and coworkers [Müller 1997] char-
acterized the different populations of excitatory and inhibitory neurons in hy-
pothalamic cultures, and were able to estimate the ratio of inhibitory to excitatory
neurons to be 2:3. They also observed that inhibitory neurons formed three times
more connections than excitatory ones and also that there was a high number of
excitatory–inhibitory reciprocal connections. In the laboratory of M. Segal they
have also worked extensively on the physiology of neuronal cultures, and in particu-
lar, they characterized how cell density determines the connectivity and morphology
of dendrites and spines [Ivenshitz 2010]. They observed an inverse correlation be-
tween synaptic strength and cell density, while the strength of spontaneous release
remained unchanged. Their results suggest the presence of active mechanisms
(plasticity) in the neuron that tune synaptic strength based on its surrounding and
their activity.

Given that most neurons in cortical and hippocampal cultures are pyramidal neurons
[Spruston 2008], it might be tempting to directly extrapolate from electrophysio-
logical results in these tissues. However, it has to be done with extreme care. For
example, it was observed that in layer V of the neocortex, the excitatory post–
synaptic potentials (EPSPs) from pyramidal neurons show strong attenuation based
on distance [Williams 2002], i.e., the amplitude of the EPSP decayed as it traveled
from the synapse to the soma. On the other hand, this attenuation is not present
in CA1 hippocampal pyramidal neurons [Magee 2000], where the neurons appear
to have developed mechanisms of ’synaptic scaling’, so that they can correct the
amplitude decay.

1.4.2 Synapse formation and plasticity

The formation and development of connections during maturation in a neuronal cul-
ture is an intricate process that involves many different factors (see [Marom 2002]
for a review). Neurons in culture start to develop neurites right after plating, and as
soon as the cells become spontaneously active, there is a rapid increase in synapse
formation, promoted by this activity. The number of total synapses, however, starts
to decrease after a few weeks, although the specific time at which this process starts
varies greatly between preparations of different laboratories.
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The development of synapses is strongly coupled to the activity, e.g., a reduction
in activity induces neurite outgrowth, whereas an increase in activity has the op-
posite effect [Van Huizen 1987]. Also, all synapses appear to be chemical, with no
gap junctions present [Nakanishi 1998], although this might be related to the cell
densities used in the studies. The development of connections is also coupled to
other biological mechanisms, like the presence of neurotrophic factors. It has been
shown that the presence of BDNF19 triggers excitatory synapse formation twofold
and also speeds up culture maturation [Jacobi 2009].

In the previous section we reported that the strength of the connections depends on
cell density [Ivenshitz 2010], but it also changes during development. One week
after plating the distribution of connection strengths is quite narrow, but it broadens
after two weeks [Lin 2002]. The strength of the synapses also changes with the
levels of activity, where long periods of inactivity increases neurotransmitter release
and synapse size [Murthy 2001]. Not only that, but inactivity might also affect the
neuron sensitivity to current input by regulating its ionic conductances [Desai 1999].

These mechanisms are related to homeostatic plasticity, which plays a very im-
portant role during the development of the nervous system [Turrigiano 2004,
van Ooyen 2011] and posterior circuit refinement [Turrigiano 2011]. In a similar
direction, there has been interest in trying to induce long–lasting plasticity effects
via external stimulation (usually with electrodes). The idea is to try to elicit a
non–homogeneous plasticity response by a different mechanism, e.g., spike timing–
dependent plasticity [Caporale 2008, Watt 2010]. The results, however, have been
mixed. Although there has been several reports of activity–induced plasticity in
cultures [Maeda 1998, Jimbo 1999, Shahaf 2001], in most cases it appears to be
a non–lasting effect20. A thorough study by D. Wagenaar and coworkers tried to
induce functional plasticity in cultures with several different protocols and were
unable to observe any significant effects [Wagenaar 2006b].

1.4.3 Short–term synaptic depression

Short–term synaptic depression (STD) can also be considered as another type
of synaptic plasticity, but on a much shorter time scale. The effects of STD on
the activity of neuronal cultures have been reported in numerous studies. We
have already shown some of them in Section 1.3.4 from a modeling perspective.
STD accounts for the reduction of synaptic efficacy after repetitive stimulation
caused by the exhaustion of vesicle pools at the terminals (see [Zucker 2002]
for a review). There are many reports of STD in cortical [Boudreau 2005] and
hippocampal [Deuchars 1996, Staley 1998] slices, although with different effects

19 Brain–Derived Neurotrophic Factor.
20 Soriano, J. (2012) Private communication.
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[Virmani 2006]. In vivo, however, it could very well be that it has a much smaller
importance [Reig 2006].

In dissociated cultures the effect of STD is clear. Different results [Maeda 1995,
Tabak 2001, Opitz 2002] already pointed in the direction that STD might play
a determinant role in burst termination and distribution. And later, M. Segal
group showed unequivocally the role of STD in hippocampal dissociated cultures
[Cohen 2011] by directly modifying the dynamics of vesicle recycling.

The current model of synaptic dynamics is characterized by the interplay between
three different vesicle pools that exists in the synapses. There exists a small vesicle
pool, called the readily releasable pool (RRP) that is located at the synaptic bouton,
almost touching (kissing) the membrane [Zhang 2009]. The RRP has very few
vesicles (∼ 10 in a rat hippocampal synapse), which are ready to be released as
soon as a signal (an axon potential) arrives. These vesicles are so close to the
membrane that they can also spontaneously fuse REF. After these vesicles fuse with
the membrane and release the neurotransmitters in the synaptic cleft, they undergo
a slow recycling process which replenishes them and moves them to the recycling
pool. The recycling pool is bigger (∼ 20 vesicles) and supplies new vesicles to the
RRP with a time scale of a few seconds. The third vesicle pool is much bigger
(∼ 200 vesicles) is called the reserve pool, and is often shared between various
boutons. Its main task is to supply the recycle pool with new vesicles, however, it
only becomes active after heavy stimulation and its dynamics are extremely slow
(see [Rizzoli 2005] for a full review).

The combination of the timescales associated to vesicle recycling and mobiliza-
tion, specially in the RRP and the recycling pool is what gives STD its char-
acteristic timescales. The timescale associated to STD varies greatly from cul-
ture to culture and usually has various components. Garcia-Perez and coworkers
[Garcia-Perez 2008] found that the replenishment of the RRP can have two dif-
ferent timescales, a fast one ∼ 7s and a slow one ∼ 1min which is switched on
under heavy use. The strength of depression might also strongly depend on the
number of vesicles at each pool. This variability in the STD timescales and pool
sizes might explain the wide distribution of bursting activity patterns observed in
cultures [Opitz 2002, Wagenaar 2006a].

1.4.4 Spontaneous activity

We have already reviewed in Section 1.3 many of the different dynamical regimes
of activity observed in cultures. Here we will focus on the different mechanisms
that are involved in the emergence of collective spontaneous activity in cultures,
specially in 2D cultures, characterized by the presence of network–wide episodes
of collective activity.
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1.4.4.1 Noise sources

The collective bursts of activity observed in two–dimensional cultures have a
synaptic origin, already shown by H. Robinson and coworkers in one of the first
studies of network activity in cultures [Robinson 1993]. They observed that network
bursts were completely suppressed after the blockage of excitatory currents by
application of CNQX (an AMPA antagonist) and APV (an NMDA antagonist).

Although the propagation of spontaneous firing of individual neurons is necessary
to trigger bursts, the determinants of individual spontaneous firings are not so clear.
Several reports show that neuronal activity is completely suppressed by the applica-
tion of CNQX and APV (not only network bursts) [Cohen 2008, Serra 2010]. Many
groups have also described that there are no pacemaker or endogenously active
cells in hippocampal and cortical cultures [Opitz 2002, Marom 2002], although
endogenously active cells are present in spinal cord cultures [Latham 2000], and
this effect might depend strongly on the extracellular medium [Su 2001].

Similarly, miniature post–synaptic currents (minis) might play an important role
in spontaneous activity and be one of the main sources of noise in these systems
[Otsu 2003]. Minis are caused by the spontaneous fusing of synaptic vesicles
with the membrane and the subsequent release of neurotransmitters. It has been
observed that minis have a functional role in the nervous system, from maintain-
ing synaptic structures [McKinney 1999] to protein synthesis [Sutton 2007] (see
[Kavalali 2015] for a review). In cultures, minis are also observed [Serra 2010],
and in the case of dense cultures their amplitudes are comparable to the ones from
evoked release [Ivenshitz 2010]. Minis might also explain why single neuron activ-
ity is also blocked after CNQX and APV application, since they still require free
synaptic receptors to trigger any response. Their frequency, however, might be too
small to trigger single neuron firing, although they could trigger dendritic spikes
instead [Golding 1998, Gasparini 2004].

1.4.4.2 Synaptic currents and other effects

There are two main neurotransmitters involved in synaptic transmission in cortical
and hippocampal dissociated cultures, namely glutamate for excitatory connections,
and GABA for inhibitory connections (see [Hammond 2001, Hammond 2008]
for more details). Glutamate acts primarily in two different receptors, AMPA
and NMDA. AMPA plays a major rule in burst generation, whereas the effect
of NMDA is mostly associated to burst maintenance and long–lasting plasticity
effects [Cohen 2009]. NMDA–induced currents have a much smaller amplitude
than AMPA ones, and although they last longer, they are also modulated by the
membrane potential of the post–synaptic neuron, having almost no effect if the post–
synaptic neuron is not firing (hence its importance in plasticity, as it is only active



1.5. Connectomics 33

when both the pre– and post–synaptic neurons are firing). Among the different
GABA receptors, GABAA is the predominant one. It also plays a major role in
burst termination and regulation, but it is not involved in burst initiation. Indeed,
given its inhibitory role, it would be surprising if it did.

There are several other mechanisms that might affect spontaneous activity. One
that we have already mentioned is the growing medium. Differences ionic concen-
trations and the presence of specific growth factors might have a big impact on
the system dynamics and must be carefully considered from an experimental point
of view. Another important factor is temperature, which we have considered in
Chapter 2, where we find that the bursting dynamics are present at both room and
physiological temperatures. Last but not least, it is worth remarking the presence of
astrocites in the culture. Astrocites play very important role in the nervous system
[Welberg 2010, Hamilton 2010], and they has been observed to promote activity in
cultures [Serra 2010], even though they are not an essential component, since many
cultures are grown in the absence of glial cells.

1.5 Connectomics

Important advances in the last decade have provided unprecedented detail on the
structure and function of brain circuits [Power 2011, Bullmore 2009] and even
programs aiming at an exhaustive mapping of the brain connectome(s) have been
announced [Alivisatos 2013, Alivisatos 2012, Abbott 2013a, Chicurel 2000]. First,
the combination of invasive and non-invasive techniques such as high-resolution
optical imagery and diffusion-based tractography have revealed the major archi-
tectural traits of brain circuitry [Hagmann 2008]. Second, functional imaging
has provided non-invasive measures of brain activity, both at rest [Deco 2011]
and during the realization of specific tasks [Power 2011]. These efforts have
opened new perspectives in neuroscience and psychiatry, for instance to iden-
tify general principles underlying interactions between multi-scale brain circuits
[Raizada 2003, Varela 2001], to probe the implementation of complex cognitive
processes [Corbetta 2008, Gaillard 2009], and to design novel clinical prognosis
tools by linking brain pathologies with specific alterations of connectivity and
function [Lynall 2010, Seeley 2009, Zhou 2012]. At the same time, tremendous
technological advancements in serial-section electron microscopy are making the
systematic investigation of synaptic connectivity at the level of detail of cortical
microcircuits accessible [Bock 2011].

Despite continuous progresses, the understanding of inter-relations between the
observed functional couplings and the underlying neuronal dynamics and circuit
structure is still a major open problem. Several works have shown that functional
connectivity [Friston 2011] at multiple scales is reminiscent of the underlying
structural architecture [Deco 2011, Honey 2009, Wang 2013]. This structure-to-
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function correspondence is, however, not direct and is rather mediated by interaction
dynamics. On one side (“functional multiplicity”), structural networks generating
a large reservoir of possible dynamical states can give rise to flexible switching
between multiple functional connectivity networks [Battaglia 2012, Deco 2012].
On the other (“structural degeneracy”), very different structural networks giving
rise to analogous dynamical regimes may generate qualitatively similar functional
networks [Stetter 2012]. Therefore, particular care is required when interpreting
data originating from non-invasive functional data-gathering approaches such as
fMRI [Logothetis 2008]. Altogether, these arguments call for highly controllable
experimental frameworks in which the results and predictions of different functional
connectivity analysis techniques can be reliably tested in different dynamic regimes.
One of the best experimental platforms for this kind of analysis are neuronal cultures,
and this is explored in detail in Chapter 6. In there, we study the reconstruction of
connectivity of simulated neuronal networks by directly analyzing calcium imaging
time series, with an approach based on information theory called Generalized
Transfer Entropy (GTE) [Stetter 2012].

1.5.1 Network inference techniques

There is a rich literature on methods of network structure reconstruction from
observed time series, not only stemming from research in neuroscience, but also
machine learning and econometrics, which have fueled the area of causal inference
from temporal data with numerous novel techniques [Popescu 2013]. Briefly, de-
spite the 20th century rise to prominence of statistics, initially intended to resolve
causal quandaries in agricultural and industrial process refinement, the field of
statistical causal inference is relatively young. Although its pioneers have received
wide praise (Clive Granger receiving the Nobel Prize and Judea Pearl receiving the
ACM Turing Award), the methods they have developed are not yet widely known
and are still subject to refinement. Even though one of the least controversial nec-
essary criterion of establishing a cause-effect relationship is temporal precedence,
many causal inference algorithms do not require time information and establish
possible causal relations among observations on other grounds, based on conditional
independence testing [Pearl 2000], or, more recently, based on statistics of the joint
distribution of pairs of variables. The work of Clive Granger, built upon the 20th
century development of time series modeling in engineering and economics, with
some input from physiology, lead to a framework which admittedly does not allow
us to identify causality unequivocally, but has received a lot of attention because of
the simplicity of the method and practical successes obtained in econometrics and
neuroscience [Popescu 2013].

The basic idea behind Granger causality is to test whether observations of time
series of two variables A and B are symptomatic of an underlying process “A causes
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B" rather than “B causes A", is to fit various predictive models A(present time)
and B(present time) as a function of A(past times) and B(past times). Clues are
obtained if A can be predicted better from past values of A and B rather than from
A itself, but B cannot be predicted better from past values of A and B rather than
from B itself. Numerous improved methods have been derived, incorporating, for
instance, frequency domain analysis in lieu of time domain analyses [Nolte 2010].
One recent idea is to add contemporaneous values of B to predict A, and vice versa,
to take into account instantaneous causal effects, due for instance to insufficient
time resolution [Moneta 2005].

Another approach, which is not limited to statistics of pairs of variables, is to use
score-based methods, by performing a search in the space of all possible archi-
tectures, guided by an objective function assessing the goodness of signal recon-
struction (possibly penalized to favor sparse connectivity). Such methods include
Bayesian approaches such as Dynamical Causal Modeling (DCM) [Friston 2003],
which compare data generating models formulated in terms of differential equations
(modeling the dynamics of hidden states in the nodes of a probabilistic graphical
model), where conditional dependencies are parameterized in terms of directed
effective connections. Other related methods include L1 and/or L2 penalized re-
gression methods [Ryali 2012].

These kinds of multivariate approaches very easily reach the “curse of dimensional-
ity”, where there is never enough data to establish statistical significance. On the
other hand, in neuroscience, simple linear auto-regressive (AR) models underlying
Granger causality do not capture well the complexity of neuronal signals. But
not everything is lost, Granger causality is only a special case of a more general
form of information theoretic measures. More general ones, like Transfer Entropy
(TE) [Kaiser 2002, Schreiber 2000] can capture linear and non-linear interactions
between any pair of neurons in the network. TE does not require any specific
interaction model between the elements, and therefore it is attracting a growing
interest as a tool for investigating functional connectivity in imaging or electrophys-
iological studies [Gourévitch 2007, Besserve 2010, Wibral 2011, Vicente 2011].
The independence of TE from assumptions about interaction models has made
it adequate to deal with different neuronal data, typically spike trains from simu-
lated networks [Kobayashi 2013], multi-electrode recordings [Bettencourt 2007,
Garofalo 2009, Ito 2011, Marconi 2012, Shimono 2014] or calcium imaging fluo-
rescence data [Stetter 2012]. TE has proved to be successful in describing topo-
logical features of functional cortical cultures [Bettencourt 2007, Garofalo 2009,
Marconi 2012], and in reconstructing structural network connectivity from activity
[Ito 2011, Stetter 2012].
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2
Noise focusing: the emergence of

coherent activity in neuronal cultures

The spontaneous activity of neuronal tissues is the ultimate paradigm of complex
emergent behavior. Understanding the role of network structure on neuronal dynam-
ics and function is a major challenge that often benefits from modern perspectives in
statistical physics and complex networks dynamics [Bullmore 2009, Chialvo 2010].
One of the primary questions one should address is how the spontaneous activity of
neuronal networks is generated. In the mammalian brain, spontaneous activity is
related to the default, resting–state [Deco 2011], characterized by several oscillatory
patterns that cover a wide range of frequencies (the so-called brain rhythms), which
play a fundamental role in brain development [Spitzer 2006, Blankenship 2010],
synchronization and communication of distant brain areas [Buzsáki 2004].

Although the spontaneous oscillatory activity of neuronal assemblies depends
on both intrinsic neuronal properties and network architecture, the robustness of
spontaneous activity hints at the existence of general principles that govern its initi-
ation and maintenance. Brain sections in the form of cortical slices preserve many
dynamical traits of the original tissue [Sanchez-Vives 2000, Ruiz-Mejias 2011],
and organotypical cultures from areas as diverse as the retina [Soto 2012] and
the spinal cord [Tscherter 2001] display a rich repertoire of spontaneous activity
patterns. Even cultures from dissociated neurons [Eckmann 2007] develop spon-
taneous activity patterns that resemble those of the brain during development. In
fact, in recent years in vitro neuronal cultures have been recognized as a suc-
cessful model system of neuronal activity and general physical principles behind
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the collective dynamics of neurons have been elucidated within this framework
[Soriano 2008, Feinerman 2008, Cohen 2010].

As we have reviewed in Chapter 1, early stages of activity in cultures are
characterized by robust, nearly periodic, episodes of collective neuronal firing
(bursts) [Maeda 1995, Opitz 2002, Marom 2002, Wagenaar 2006a, Cohen 2008,
Ham 2008], but the mechanisms underlying its generation and maintenance
are still poorly understood. Some studies have identified burst initiation areas
[Feinerman 2007] or interactions at the population level [Eytan 2006] as triggers of
network activity; others have proposed the existence of subnetworks of leader neu-
rons that would control the burst initiation by a recruitment process [Eckmann 2008,
Eckmann 2010]; and some have also suggested synchronization through different
neuronal types and network structures [Segev 2004, Baruchi 2008].

In this chapter, we unveil a new scenario that shows how the interplay between
network topology and intrinsic neuronal dynamics suffice to explain the initiation
of collective spontaneous activity as a noise-driven phenomenon. We will prove
computationally and experimentally that the global firing of the culture is controlled
by a pulse of activity that is randomly nucleated and that propagates throughout
the system, and we will expose a mechanism of anisotropic noise amplification
that we call noise focusing, a phenomenon of implosive, highly heterogeneous
concentration of spontaneous activity. This mechanism explains the fast nucleation
time scale that is required to reconcile the stochastic alternation of nucleation sites
with the nearly periodic bursting.

2.1 Theoretical and computational description of neuronal
cultures

To tackle the emergence of spontaneous activity in in vitro cultures there are two
fundamental aspects that need to be addressed. First, the dynamics governing
activity at the single neuron level and their interactions; and second, the underlying
network that identifies the connected neuronal pairs. Much is known from the first
as neuroscientists and physiologists have spent decades decoding the neuron; but a
lot of work is still needed on the network part. Neurons and their activity can easily
be probed and visualized in the laboratory, but the connections are much harder to
resolve; not only are they much smaller (the typical synapse is below 1 µm) but
their number is vast. There are over 1,000 synapses for every neuron in the brain,
and probing every single synapse is infeasible, even with purely observational tools;
different strategies are thus required to unveil the network structure on the living
brain.
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2.1.1 Neuron model

To accurately describe the single neuron dynamics we have to account for both
the generation of action potentials in the soma and for the currents involved in
neuron–neuron interactions (synaptic dynamics). Following [Alvarez-Lacalle 2009,
Izhikevich 2003, Izhikevich 2007] we model the soma dynamics and the generation
of action potentials by a quadratic integrate and fire model with adaptation. This
description leads to a set of two coupled non-linear ordinary differential equations
that, in their reduced form, reads

Cv̇ = k(v− vr)(v− vt)−u+ I +η (2.1)
τau̇ = b(v− vr)−u (2.2)

if v≥ vp, then v← vc,← u+d. (2.3)

Equation (2.1) describes the dynamics of the soma membrane potential v(t). vr
and vt are the resting and threshold potentials respectively. C is the normalized
leaky membrane capacitance and u is an inhibitory current that accounts for the
internal slow currents generated by the activation of ion channels. I contains the
synaptic inputs from other neurons and η is a noise term. Equation (2.2) represents
effectively the combined effect of the slow currents. τa, b and d are parameters that
control the adaptation and recovery of the neurons.

In this description, the membrane potential changes from its resting value vr as it
receives inputs from other neurons or noise. Above vt , the potential grows very
rapidly up to a peak value vp that is associated to the generation of a spike. The
potential is then manually reset to vc < vt and the inhibitory current u increased.
This model accurately describes the generation of the action potential but omits the
after–spike dynamics by manually resetting the membrane potential and including
an effective refractory time. This omission makes the model very computationally–
efficient without sacrificing accuracy, since the after–spike dynamics play very little
role in culture dynamics.

The last term of Equation (2.1) accounts for the noise present in the system. The
main source of intrinsic noise in our system is a shot noise representing the sponta-
neous release of neurotransmitters in the presynaptic terminals [Cohen 2009]. This
spontaneous release generates small currents (minis) in the post-synaptic terminal
that travel down the dendritic tree to the soma, in the same way as evoked currents
from other firings. In the model, the only difference between spontaneous and
evoked currents is their amplitude. Given this choice of noise, most of the presented
results can be easily generalized to other neuronal assemblies where the system
receives an external and uncorrelated input in the form of a Poisson process. A
small Gaussian white noise is also added to the system to account for intrinsic
membrane potential fluctuations.
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This model reproduces the spiking behavior of most cortical neurons, but given that
in cortical networks several types of neurons coexist, we have tested the influence
of neuronal variability in the dynamics of the network with no significant changes
observed in the overall behavior. For instance, we have studied the influence of
subpopulations of low and high threshold spiking neurons (LTSN and HTSN,
respectively). We introduced 10% of HTSN (with vc = −45 mV and d = 50)
[Izhikevich 2003] and 10% of LTSN (divided in two groups, 5% with vc =−40 mV,
d = 55, and 5% with vc =−35 mV, d = 60), and found no significant differences.
Consequently, ew restricted most of our numerical simulations to populations
of regular spiking neurons. Also, for most of our numerical analyses we have
considered fully excitatory networks, although most of the results remain essentially
unaffected under the presence of weak inhibition, as is the case for young cultures
[Soriano 2008].

The list of parameters used to describe the dynamic behavior of the spiking neurons
are listed in Table 2.1.

2.1.2 Synapse model

Each connection between two neurons is associated to a chemical synapse with its
own dynamics1. For simplicity we consider that when a neuron generates an action
potential, all its presynaptic terminals release neurotransmitters at the same time
with probability p = 1.

Let us consider the dynamics of a synapse that connects neuron i with neuron j
(i→ j). When the neuron i generates a spike at time tm it triggers the release of
neurotransmitters at the synapse and induces a post-synaptic current at neuron j.
This current travels from the synapse to the soma and depolarizes the membrane,
facilitating the generation of an action potential at neuron j. The total input currents
on neuron j is then

I j(t) =
kin

j

∑
i=1

∑
tm<t

Ei(t, tm), (2.4)

where Ei(t, tm) is the current induced by neuron i at time t as a result of the action
potential generated at time tm. The first summation comprises all input connections
kin

j on neuron j, and the second one all spikes previously generated. Note that the
subset tm is in general different from neuron to neuron, and can be viewed as the
spike history of neuron i.

1 Electrical synapses play very little role in homogeneous cultures.
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Each of the post-synaptic currents is modeled as a sudden increase in intensity at
the time of action potential tm and an exponential decay afterwards. We do not
consider any transmission delay given the typical dimensions of cultures. For our
excitatory currents we consider only the effect of AMPA receptors since they are
the main source of activity in network bursts2. The post-synaptic currents due to
the firing of neuron i can be expressed as

Ei(t, tm) = gADi(tm)exp
(
− t− tm

τA

)
θ(t− tm), (2.5)

where gA is the strength of the synapse (associated to the receptor density at the post-
synaptic terminal) and τA the characteristic decay time of the post-synaptic current.
D(t) accounts for short-term depression, a mechanism in which synapses reduce
their efficacy due to depletion of neurotransmitters in their presynaptic vesicles
[Golomb 1997]. Short-term depression acts on a fast time scale and therefore affects
the spontaneous bursting activity.

Depression is modeled as an internal variable D that describes the efficacy of the
neuron presynaptic terminals. D has a resting value of 1 and relaxes exponentially
as [Tsodyks 1997, Tsodyks 2000, Alvarez-Lacalle 2009]

Ḋ =
1

τD
(1−D)− (1−β )Dδ (t− tm), (2.6)

where τD is the characteristic recovery time associated to the recycling of synaptic
vesicles [Garcia-Perez 2008, Cohen 2011]. This recovery time is highly variable
from culture to culture and DIV, and is the time scale that controls the inter burst
intervals. It is typically in the range 0.5− 20s. The release of neurotransmitters
at the synapse as a consequence of firing results in a reduction of D to βD, with
β < 1. Subsequent action potentials will induce post-synaptic currents, gradually
with lower strength, resulting in a reduced efficacy to generate a spike in the
post-synaptic neuron unless the synapse has had enough time to recover.

2.1.3 Metric construction of the network

To construct the neuronal network we model pyramidal neurons (which account
for most of the neuronal types found in cultures) as circular cell bodies (somas)
with fixed diameter φs = 15 µm. The cell bodies are then randomly placed on a
bi–dimensional area described by the coordinates (x,y), and without any overlap
between cell bodies. The total number N of neurons is given by the density ρ .

2 We have also tested the effect of NMDA currents, and their major role during bursts is to lengthen
their duration, and play almost no role during burst formation.
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Table 2.1 Dynamical parameters. List of parameters used to
simulate the neuronal dynamics.

Dynamics Parameters Value
Soma parameters
Resting membrane potential vr =−60mV
Threshold membrane potential vt =−45mV
Peak membrane potential vp = 35mV
Reset membrane potential vc =−50mV
Normalized membrane capacitance C = 50ms

k = 0.5mV−1

τa = 50ms
b = 0.5
d = 50mV

Synapse parameters
Depression recovery time τD = 5 ·102−2 ·104 ms
Depression decay β = 0.8
AMPA current strength gA = 10−50mV
AMPA current decay time τA = 10ms
GABAA current strength gG = 20−100mV
ycurrent decay time τG = 20ms
Noise parameters
White noise strength gs = 3 ·102 mV2ms
White noise auto-correlation 〈η(t)η(t ′)〉= 2gsδ (t− t ′)
Shot noise frequency λ = 0.01−0.05ms−1

Shot noise strength (minis) gm = 10−50mV
Shot noise decay time τm = τA
Simulation parameters
Algorithm Forward Euler
Time step ∆ t = 0.01−0.1ms
Typical Run time 104 s

We consider densities in the range 250−1000neurons/mm2 to match the values
observed experimentally.

From each soma on the substrate an axon grows in a random direction following a
quasi–straight path, as described below, and with a final length that is given by a
Rayleigh distribution of the form

p(`) =
`

σ2
`

exp

(
−`2

2σ2
`

)
, (2.7)

where σ2
` = 900 µm is the variance of the distribution and its value is chosen so

that the average axonal length matches the value 〈`〉 ∼ 1.1mm measured in our
experiments. The choice of a Rayleigh distribution corresponds to a Gaussian
isotropic distribution at the axon’s tip. If the X and Y coordinates of the axon tip are
uncoupled and both follow a Gaussian distribution with variance σ2, the resulting
length is described by a Rayleigh distribution.
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Experimental observations show that axons grow mostly straight but with a persis-
tence length of a few hundred microns. To mimic this condition realistically, we
apply the following algorithm to position each axon. We initially divide the total
length ` into small segments ∆`= 10 µm long. The first segment is placed at the
end of the neuron cell body, and with an orientation that follows an uniform angular
distribution

p(θ0) =
1

2π
. (2.8)

The i-th segment is then placed at the end of the previous one, and oriented following
a Gaussian distribution around the previous segment given by

p(θi) =
1√

2πσ2
θ

exp

(
− (θi−θi−1)

2

2σ2
θ

)
, (2.9)

where θi−1 is the angle between the segment i−1 and the origin. σθ is chosen to
obtain the desired persistence length (typically σθ ∼ 15◦). The growing process is
then repeated until all segments are laid down.

To complete the description of the network we set up the dendritic tree. Based on
[Wen 2009], and other similar studies, we consider the dendritic tree of a neuron as
a disk of diameter φd drawn from a Gaussian distribution with mean µd = 300µm
and standard deviation of σ2

d = 40µm.

Figure 2.1 Metric construc-
tion of the network. For clar-
ity only four neurons are
shown, indicating their somas
and axons. The area covered
by the dendritic tree is depicted
for two neurons (blue and red
circular areas). A connection
between two neurons (arrow)
is allowed whenever the axon
of a neuron crosses the den-
dritic tree of another one.

2.1.4 Connectivity

The growth process described above leads to a geometric construction of the network
connectivity based on the following rules. First, a connection can be established
only when the axon of a given neuron intersects the dendritic tree of any other
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neuron, as illustrated in Figure 2.1. And second, those neurons that fulfill this
geometric condition will connect with probability α . This probability of connection
is considered to be independent of the overlapping length between the axon and
the dendritic tree that is intersected [Wen 2009]. For α = 1, any axon that crosses
a dendritic tree establishes a connection. In large neuronal structures, e.g. cortex,
where the connectivity profiles are known, α is in the range 0.1−0.2. However, in
neuronal cultures α is higher due to the reduced connectivity and dimensionality.
In our case we consider α in the range 1/3–1. The whole network connectivity that
results from this geometric construction is stored in the adjacency matrix A, where
Ai j = 1 identifies a connection3 i→ j.

The typical range of parameters used to generate the networks are presented in
Table 2.2.

Table 2.2 Network parameters. List of parameters used to
generate the neuronal networks.

Network Parameters Value
System-wide parameters
System size L×L L = 5−20mm
Density ρ = 102−103 neu/mm2

Morphological parameters
Soma size (fixed) ra = 7.5 µm
Dendritic tree (Gaussian pdf) µ = 150 µm, σ = 20 µm
Axonal length (Rayleigh pdf) σ = 800 µm
Axonal segment length (fixed) ls = 10 µm
Axonal segment angle (G. pdf) µ = 0, σ = 0.1rad

More complex and realistic models for network construction exist, like the work
by Van Ooyen [Van Ooyen 1995], where they constructed a model for network
generation based on self–organization principles of neurite growth and neuronal
activity; including axonal overshooting and synapse pruning. Although their model
accurately reproduces some dynamical observables, it is of high computational
complexity and still misses some key points, like a real asymmetry between input
and output connections, and is based on a self–organization mechanism of average
activity that is nowadays still unclear. We chose instead to create a non–dynamical
model of network generation that matched most of our experimental observables
while making as few assumptions as possible.

3 We only consider monosynaptic connections.



2.1. Theoretical and computational description of neuronal cultures 45

0 50 100 150 200
0

0.01

0.02

0.03

Number of connections (k)

p(
k)

 

 
kin

kout

0 0.1 0.2 0.3 0.4
0

5

10

15

20

Clustering coefficient (CC)

p(
C

C
)

 

 
total
cycle
middleman
in
out

ba

Figure 2.2 Network connectivity distributions. a, Input and output connectivity distributions
for a characteristic network. Although both distributions have the same average, their profiles
differ greatly. b, All possible clustering coefficient distributions for the same network.

2.1.5 Network properties

All the network properties can be extracted directly from its adjacency matrix
A. To study our networks we will focus on connectivity, clustering, triangles and
loops, distinguishing between inputs and outputs since the adjacency matrix is not
symmetric. Input and output connectivities for neuron i are respectively defined by

kin
i = (AT 1)i = ∑

j
A ji, (2.10)

kout
i = (A1)i = ∑

j
Ai j, (2.11)

where the sum goes over all the N neurons in the network (we do not allow self–
connections) and 1 = (1, . . . ,1) is the N–dimensional unit vector. Note that 〈kin〉=
〈kout〉, although their distributions usually differ as we can see in Figure 2.2a. The
total number of triangles for neuron i is

T T
i = 1/2(A+AT )3

ii, (2.12)

and the associated clustering coefficient is

CT
i =

(A+AT )3

(kin
i + kout

i )(kin
i + kout

i −1)−2k↔i
, (2.13)

where k↔i = (A2)ii is the number of bidirectional links of neuron i. The clustering
coefficient is an important observable that characterizes percolation properties of
the network [Serrano 2006], and it is a measure of the number of loops (triangles)
a node makes over all its possibilities (based on its connectivity). The above
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definitions of triangles and clustering coefficient do not take into account the
directed nature of the network links. For directed networks different triangles can be
distinguished and the respective clustering coefficients can be defined, and expressed
by similar operations as shown in Figure 2.3 (see also [Fagiolo 2007, Ahnert 2008]
for details).

i j
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Figure 2.3 Clustering. All pos-
sible connectivity triangles that
neuron i can form with its neigh-
bors as well as its clustering co-
efficient definitions, where k↔i =
(A2)ii is the number of bidirec-
tional connections. Note that ’cy-
cle’ is often called ’feedback
loop’ and the set of ’middleman’,
’in’ and ’out’ correspond to ’feed-
forward loops’.
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Figure 2.4 Correlation distance. Correla-
tion distance for a characteristic network ac-
cording to Equation (2.14). In orange, an expo-
nential fit, resulting in a characteristic length
of ξc = 0.26±0.01mm.

Given that our networks have a large number of neurons and are extended in
space, instead of working with their individual properties, such as input and output
connectivity or triangles, it is better to describe the networks by their network maps,
a coarse-grained representation of the local observables. These maps are obtained
by averaging neuronal properties over a specific kernel4 with a size given by the
average connectivity correlation length ξc, which is usually of the order of the size
of the dendritic tree, i.e. 300 µm. The precise value of this correlation length is
extracted from the decay of the connectivity correlation function Xc(r), defined as
the average number of connections that each pair of neurons have in common, as a
function of the distance between neurons r

4 We used a flat, circular kernel.
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input connectivity
56 67 79 90

output connectivity
58 68 78 88

total triangles
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feedback triangles
245 338 431 524

feedforward triangles
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  clustering Coefficient
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feedback clustering coefficient
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feedforward clustering coefficient
0.05 0.06 0.07 0.09

1mm

Figure 2.5 Topological network observables. Network maps obtained from coarse–graining
the different topological observables in a network with periodic boundary conditions using the
parameters from Table 2.2. The different triangles and clustering observables have been grouped
into feedback and feedforward loops.

Xc(r) =
N

∑
i, j=1

N

∑
k=1

(
AikA jk +AkiAk j

)
δ

(∣∣ri− r j
∣∣− r

)
. (2.14)

In general Xc(r) can be fitted by an exponential ∼ exp(−r/ξc) which defines the
correlation length. The maps for a characteristic network are shown in Figure 2.5.
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2.1.6 Connectivity distributions

Based on the connectivity rules from Section 2.1.4 and the respective distributions,
the output connectivity of a neuron is easily calculated if we consider the axon
to be completely straight. Given a neuron with axon length `, its average output
connectivity kout is the number of neurons within range 〈φd/2〉= µ/2 of its axon
that form a connection with probability α

kout =

(
π(
〈φd〉

2
)2 + 〈φd〉`

)
ρα, (2.15)

If we now average over all neurons we obtain

〈kout〉=

1
4

πµ
2 +µ

∞∫
0

`p(`)d`

ρα =

(
1
4

πµ
2 +µ〈`〉

)
ρα, (2.16)

where 〈`〉= σ`

√
π

2 . To compute the probability distribution of output connectivity
p(kout) we need to take into account the distributions of density, dendritic trees
and axon lengths. As we have just seen, the output connectivity of a given neuron
is defined by its axon length and the sizes of the dendritic trees of the neurons it
intersects. These however result in the combination of many independent random
variables, and can be approximated by their means. Given that, the probability to
have kout connections is the same as having an axon of length

`=

(
kout − 1

4
πµ

2
ρα

)
1

µρα
, (2.17)

and after changing variables and applying it to the Rayleigh distribution

p(kout)dkout =
kout − 1

4 πµ2ρα

(µρασ`)2 exp
(
−

(
kout − 1

4 πµ2ρα

)2

2(µρασ`)
2

)
dkout , (2.18)

for kout > 1
4 πµ2α .

The input connectivity can be calculated in a similar way if we also consider the
axons straight, although it is more involved. For a given neuron j with dendritic
tree diameter φd , it will form a connection with another neuron k that is found at a
distance r (r > φd/2), if its axon initial angle is in the range θ0 ∈ (−ψ,ψ), where

ψ = arcsin
(

φd

2r

)
, (2.19)

i.e., the axon of k can intersect within the dendritic tree of j. For the axon to
intersect, it also needs to have a length of
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`m = r cosθ0−

√
φd

2

2
− r2 sin2

θ0, (2.20)

or larger. If we now average over all possible lengths and angles we obtain the
probability that the axon of a neuron at a distance (r > φd/2) intersects with the
dendritic tree of j, which reads

P(r > φd/2) =

ψ∫
−ψ

dθ0

∞∫
`m

p(θ0)p(`)d` . (2.21)

For our choice of distributions it becomes

P(r > φd/2) =
1

2π

ψ∫
−ψ

dθ0 exp

(
− `2

m

2σ2
`

)
≡P(r,φd ,σ`), (2.22)

which can not be simplified any further. All the neurons at a distance r ≤ φd/2
can form a connection, since they are within its dendritic tree. If we now integrate
over the whole area and average over realizations, we obtain the average input
connectivity of neuron j

kin =

2π

∞∫
0

P(r,φd ,σ`)d dr+
1
4

πφ
2
d

ρα. (2.23)

If we now average over all neurons, given that 〈kin〉 = 〈kout〉 and using Equa-
tion (2.16) we obtain

2π

〈 ∞∫
0

P(r,φd ,σ`)r dr

〉
= µ〈`〉, (2.24)

which turns into 〈 ∞∫
0

P(r,φd ,σ`)r dr

〉
=

〈
φd〈`〉

2π

〉
. (2.25)

From this relation and Equation (2.23) we now have a relationship between the
input connectivity and the dendritic tree size of the form

φd =−
√

2
π

σ`+

√
σ2
`

2π
+4

kin

πρα
, (2.26)

which allows us to express the input connectivity based on the distribution of the
dendritic tree as
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p(kin)dkin =
1

πσd
√
(σ`ρα)2 +2kinρα

×

exp

− 1
2σ2

d

(√
2
π

(
1

ρα

√
(σ`ρα)2 +2kinρα−σ`

)
−µ

)2
dkin,

(2.27)

for kin > 0.

The comparison between these approximate distributions and the ones obtained
from the numerical model are presented in Figure 2.6. The p(kout) is almost a
perfect match whereas the p(kin) differs slightly, because of the fact that axons are
not completely straight.
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0.002
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0.014

Number of connections (k)
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kin simulation
kin analytical

kout analytical
kout simulation

Figure 2.6 Analytical con-
nectivity distributions. Com-
parison of the approximated
analytical connectivity distri-
butions and the simulated
ones for a network with
ρ =500 neurons/mm2, α = 1,
µ =300 µm, σd =150 µm and
σ` =800 µm.

2.1.7 Simulation details

All the source codes used in the simulations are publicly available under an MIT
license and are based on the following programs:

• neurongen5 is the program used to generate the networks. The code is able
to generate a neuronal network in any 2D topological configuration by using
bitmap images as a mask to tell the neurons where they are able to grow. This
feature enables us to use any kind of 2D pattern to modify the connectivity rules.

5 https://github.com/orlandi/neurongen

https://github.com/orlandi/neurongen
https://github.com/orlandi/neurongen
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• neurondyn6 is the program used to simulate the dynamics and is implemented
to be as efficient as possible. It allows parallelization through OpenMP for the
neuronal dynamics and through CUDA for the random number generation. An
equivalent code has also been implemented in NEST [Gewaltig 2007], although
a new implementation of the Izhikevich model was required (available upon
request).

2.2 The emergence of spontaneous activity

Using the parameters from Tables 2.1 and 2.2 the system shows the characteristic
activity regime found in neuronal cultures, i.e, collective bursts of spontaneous
activity followed by periods of barely any activity (see Figure 2.7a). The bursts are
quite periodic, as observed from their inter–burst interval (IBI) distribution (see
Figure 2.7d), and each bursts consists of 4–6 spikes per neuron with a frequency
of ∼ 200Hz. As we have seen in the introduction, several groups have tried to
understand the mechanisms underlying the generation of these bursts, but the
physical picture is unclear. To tackle this issue we first analyze the activity using
data equivalent to the one obtained in classical MEA setups, i.e., a subset of up to
64 neurons within a 1.4x1.4 mm2 region. By doing so, we are unable to observe
any significant similarity between bursts or any sort of internal order. Moreover, the
bursts appear suddenly, with no significant changes in activity prior to the burst.

This picture however, changes completely when we analyze the activity of all the
neurons simultaneously. By spatially coarse graining the onset time7 of each neuron
in the same way we did to define the network maps (see Section 2.1.5), we observe
something else; the burst is actually a wave that nucleates in a localized region of
the culture and rapidly propagates throughout the system (see Figures 2.7e and 2.7f).
The nucleation does not happen in a single point however, but rather on a wide and
irregular area. The shape of this area also defines the structure of the propagating
front.

This new picture can shed some light in trying to understand why we were unable
to see anything significant by observing the activity of a small subset of neurons
before. If we calculate the onset time of this subset, and order them with respect to
their distance to the nucleation site, we can see that if the nucleation site is close
to the region occupied by the neurons, or its shape is highly irregular, then very
little correlation between them is found (see Figure 2.7b), whereas if the nucleation
site is far from the electrodes a better correlation is observed (see Figure 2.7c).
This effect illustrates the difficulty of trying to understand the underlying dynamics
by just analyzing the activity of a subset of the system when networks of highly

6 https://github.com/orlandi/neurondyn
7 Defined as the mean of spiking times of a neuron within a burst.

https://github.com/orlandi/neurondyn
https://github.com/orlandi/neurondyn
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Figure 2.7 Bursting dynamics. a, Raster plot showing all spikes in a 80s time window from
a selected group of 55 neurons in a region of 1.4x1.4mm2 (equivalent to a typical MEA config-
uration). Bursts are clearly visible as vertical lines where all neurons spike multiple times in a
short time span. b,c, Onset time (defined as the mean time from the spike train) for each of the 55
neurons from a, for two consecutive bursts ordered from their distance to the nucleation point (see
main text). In b, there is a poor agreement with a constant velocity front given that most neurons
are next to the nucleation point. In c, the agreement is much better but the data is still quite noisy.
d, Distribution of inter–burst intervals (IBIs) showing a clear peak at 8s. The distribution spreads
asymmetrically from 6 to 17s. e,f, Wave–profile obtained from the two previous bursts by using
the onset time of all neurons in the system. The white square marks the region occupied by the 55
neurons from the raster plot.
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non–linear units are involved. Before analyzing the burst structure in detail however,
it is insightful to observe how the culture reaches the bursting regime.

2.2.1 Bursting transition

During culture maturation, the network shifts from a state characterized by the
spontaneous firing of individual neurons to the reported state of collective firing,
composed of bursts of activity. Based on previous studies [Soriano 2008], this
transition can be observed within two different but equivalent protocols. First, in a
fully formed network that gradually strengthens its connections until bursts appear,
and second, in a system that has no connections and forms them until bursts appear.

The first protocol describes a neuron recovering after connectivity blockade with a
drug like CNQX, and the later to network maturation during development. These
two approaches can be observed in Figure 2.8. If we observe the average firing rate
of a neuron as we increase the strength of the connections (g∗, see Figure 2.8a) or
the average number of connections (〈k〉, see Figure 2.8b) we see a sharp increase in
the average firing rate at a specific point (g∗ ∼ 6 ·10−2 and 〈k〉 ∼ 35 respectively).
If we look at the firing rate distribution we see that the sharp increase in the mean
is produced in both cases by the appearance of a high–frequency peak in the
distribution, characteristic of the bursting regime (Figures 2.8c and 2.8d).

The appearance of the bursting peak is abrupt, and the transition is better observed
if we use the inverse of the bursting rate, the inter–burst interval (IBI), as control
parameter. As we can see in Figures 2.9a and 2.9b, for high values of synaptic
strength the IBI quickly reaches a plateau whose characteristic value is dominated
mostly by the recovery time of synaptic depression τD. When the synaptic strength
is low, however, the bursting frequency diverges until the point that no bursts can
appear in finite time. If we look at the IBI distribution close to the transition (see
Figure 2.9c) the distribution is dominated by an exponential tail, characteristic
of processes dominated by noise; in this regime, the system has to wait for a
sufficiently big fluctuation of spontaneous activity for a burst to form. Far from
the transition however, the distribution becomes much more narrow and almost
periodic (see Figure 2.9d); in this regime, a burst can develop as soon as the system
has recovered from the previous burst.

2.2.2 Macroscopic analysis of bursting dynamics

After characterizing the bursting transition, we can go back and analyze the bursting
dynamics in more detail. We begin by trying to identify any pattern within bursts,
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Figure 2.8 Bursting transition (I). a, Average firing rate in a network with 〈k〉= 75 for different
values of the relative synaptic strength g∗ = g/gmax, where g is the actual synaptic strength and
gmax the strength required to generate a postsynaptic spike with probability 1. b, Average firing rate
in a network with g∗ = 0.08 for different values of the average connectivity. c, Probability density
function for 5 points from a, around the transition. For g∗ < 0.6 the distribution is unimodal,
whereas for g∗ ≥ 0.6 a second maximum appears at a very high frequency∼ 200Hz, characteristic
of the bursting behavior. d, Probability density function for 5 points from b around the transition.
Here the second maximum appears around 〈k〉= 29. Note that the low–frequency sharp peak that
appears in c, d, after the bursting transition is due to the last spike in a burst, that is of a much
lower frequency.

and define similarity between bursts as follows: we describe each burst by the
onset time of every neuron, as we did in Section 2.2. Given a sequence of B bursts,
we define the onset vector O j = (t j

1, t
j
2, . . . , t

j
N), where j = 1→ B, and t j

i is the
onset time of neuron i (i = 1→ N) within burst j. We now compute the interburst
similarity matrix ρ whose entries ρi j are the Spearman correlation [Hollander 1999]
between onset vectors i and j. Spearman correlation is the equivalent of the classical
Pearson correlation, but using ranked variables instead. For our onset vector O j

rank 1 is assigned to the first neuron that fires, 2 to the 2nd, and so on, resulting in a
new vector R j = (r j

1,r
j
2, . . . ,r

j
N) whose entries are the ranks. Using ranks instead of

the onset times allows us to establish more robust relationships, specially when non–
linear dependencies might exist. Within this framework, the Spearman correlation
is defined as
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Figure 2.9 Bursting transition (II). a, Interburst interval dependency with the synaptic strength
g∗ for different values of the synaptic depression time constant τD. For low synaptic strengths
the IBI increases rapidly, whereas for high synaptic strengths it slowsly decreases and starts to
saturate. b, Same but for networks with different clustering (obtained by varying the connection
probability α while keeping the average connectivity constant). The bursting transition occurs at
very different values of synaptic strengths, while they all saturate to the same value. c, Distribution
of IBIs close to the transition (τD = 3s, α = 2/3). The distribution is dominated by an exponential
tail, characteristic of processes driven by noise d, Distribution of IBIs far from the transition
(τD = 3s, α = 2/3). The distribution is now peaked at its mean with a much narrower distribution.

ρi j = 1− 6
N(N2−1)

N

∑
k=1

(
Ri

k−R j
k

)2
, (2.28)

where ρi j = 1 corresponds to a perfect increasing monotonic relationship between
onset vectors i and j, and ρi j =−1 a decreasing one. The data from the Spearman
correlation matrix ρ is then used to create an agglomerative hierarchical cluster tree
using the shortest distance as metric [Maimon 2010]. After ordering the clusters
based on their hierarchy in the tree, we plot ρ with the new order to try to identify
similarities between bursts8. We can see the results for a particular sample of 256
successive bursts in Figure 2.10, where the first ∼ 100 bursts form a clear structure,
indicating that these bursts have essentially the same internal structure. The next
∼ 25 bursts also form a clear structure, and this one is also almost completely
anticorrelated to the first group. Further inspection of some of these bursts shows
that each of these two big groups correspond to activity waves initiating at opposite
sides of the culture. This analysis tells us that bursts are neither identical nor
completely random, but there exists a rich internal structure. It is also important to
observe that the groups in the similarity matrix are heterogeneous in size, indicating
a preference for specific patterns.

We also checked if there was any temporal correlation between consecutive bursts,
i.e., if a burst that belong to a specific group conditioned the group of the next
burst. We have not observed any statistical significance in the group of consecutive

8 Although this procedure appears rather complex, it only involves calling the MATLAB pdist,
linkage and dendrogram functions.
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Figure 2.10 Interburst similarity
matrix. The similarity matrix shows
the Spearman (rank) correlation be-
tween every burst pair onset times.
Groups of bursts with similar scores
are then grouped together so each color
block around the diagonal identifies
bursts with a similar structure. The first
100 bursts in the matrix are extremely
similar, showing rank correlation of al-
most 1 to each other, a clear indicator
of an underlying pattern. The next 25
bursts also form a similar group, which
is also completely anti–correlated with
the previous group. Within this frame-
work, each burst pair showing a corre-
lation of 1 corresponds to waves that
originate in the same region and propa-
gate in the same direction.

bursts. These results suggest that there are specific patterns occurring in the culture,
and without memory. Given that each group in the similarity matrix corresponds
to a wave nucleating at a specific region in the culture, most of the information is
already contained in the nucleation region and the full information from the onset
vector is not really needed.

We now proceed to characterize each wave (burst) by its nucleation point, defined
as the geometrical center of the neurons spiking at the beginning of the burst. If
we now build a nucleation probability density function by spatially averaging all
the nucleation points obtained for a given simulation (usually ∼ 1000 bursts), a
new picture emerges. As we can see in Figure 2.11a, the original set of nucleation
points is far from being homogeneously distributed, they concentrate in specific
regions or sites, where the probability to nucleate is relatively high. Outside of
these regions, the nucleation probability decays very rapidly. Almost no waves can
nucleate outside these sites9.

To try elucidate the origin of these nucleation sites we tried to correlate this network
map with different topological and dynamical observables of the system. None of
them show a good correlation. In Figures 2.11b and 2.11c we can see the network
maps of triangles and firing frequency respectively. Although the nucleation sites
appear in zones of high number of triangles and firing frequency, the opposite is
not true. We have many zones of high number of triangles and firing frequency
that do not translate into a nucleation site or correlate with its relative intensity. A
more comprehensive list of network maps for this specific network was presented in
Figure 2.5, and none of the other observables correlate any better with the nucleation
sites.

9 A nucleation point is the origin of a single wave, whereas a nucleation site is a region of high
nucleation probability.
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Figure 2.11 Nucleation
statistics and noise focus-
ing. a-d, Contour plots of
different observables, coarse–
grained over the connectiv-
ity correlation length scale
of 0.26 mm. The specific
network realization contains
7500 neurons with an aver-
age of 70 connections per
neuron, on a square of 5×5
mm2 (ρ = 300 neurons/mm2

with a connection probabil-
ity of α = 2/3), with peri-
odic boundary conditions. a,
Nucleation probability den-
sity, identifying 3 nucleation
sites. b, Number of trian-
gles per neuron (number of
neighbors of a neuron that
are themselves neighbors). c,
Background activity. Average
number of spikes per second
and neuron between bursts.
d, Local percolation fraction.
For every point in the system
a region of radius 0.4 mm is selected. The local percolation fraction is the fraction of neurons in
the selected region that needs to be activated simultaneously to generate a burst. Comparison of
a-c shows that high clustering and high background activity do not correlate strongly with high
nucleation probability. The latter is much more peaked and selective, as similar values of those
observables yield significantly different values of nucleation probability. Looking at the zones
denoted by � andF it is clear that local statistics cannot explain the selection of a site with high
nucleation probability. Zones with high clustering (F) may not correspond to high background
noise, and vice-versa (�). This mismatch is also identified by the calculation of the Pearson’s
correlation coefficient between the nucleation map and any other network observable, giving at
best values of ∼ 0.5.

Given that several studies were able to successfully map collective dynamics
in neuronal cultures to a problem of percolation [Breskin 2006, Soriano 2008,
Tlusty 2009, Cohen 2010, Eckmann 2010] we have tried a similar approach based
on the quorum percolation model. This is explored in detail in Chapter 5, but we
include here a short description. Quorum (or bootstrap) percolation, is a generaliza-
tion of classical percolation to the case where a minimum quorum of m inputs is
required for a neuron to fire and f ∗ describes the critical fraction of neurons needed
for the system to percolate. In the case of random graphs [Tlusty 2009] we have
that

f ∗ ' m/k̄, (2.29)
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where k̄ = 〈k〉 is the average connectivity. The meaning of this expression is that
each neuron has to have at least m of its k neighbors active for percolation to happen.
This is only valid for random graph, in the limit of zero loops in the network.For
metric networks, however, no equivalent expression exists, and there is a different
condition for which the system can percolate.

For a given network embedded in a metric spare, we define an n–sphere10 of size R,
e.g., for a network embedded in two–dimensional euclidean space this corresponds
to choosing all the neurons within a circle of size R. Within the n–sphere, there
exists a local critical fraction f ∗local at which the system can percolate. Note that this
critical fraction might not have anything to do with Equation (2.29), but it needs to
exist. If f ∗local exists, then as long as the condition

f ∗local k̄/2≥ m (2.30)

is met, the whole system will also percolate. This relationship comes from the fact
that any neuron that is at the boundaries of the n-sphere will have of the order
of f ∗localk/2 neurons already active, since half of its neighbors will be inside the
n-sphere. If this condition is met for most of the neighbors, this will result in
an increase of the original n-sphere volume until the condition can no longer be
fulfilled, or the whole system is active and has effectively percolated. Note that in
general k̄/2� m so if we are able to reach the critical fraction locally, the system
is very likely to percolate.

With the quorum percolation framework in mind, we computed f ∗local for our
networks in areas with a size given by ξc (see Equation (2.14)). The results for a
particular network are shown in Figure 2.11d, where we see that the percolation
fraction does not correlate with the nucleation sites. The nucleation sites do not
correspond to regions of the system where the critical fraction is small. This result,
together with the previous ones, already suggests that the nucleation process might
not be dominated by local properties of the system, as we will later see.

The relationship between the different observables is better characterized by the use
of Lorenz curves11. We can map any discretized two–dimensional observable Si, j to
the ordered set S∗ = (s1,s2, . . . ,sN) such that s1 > s2 > .. . > sN . The corresponding
Lorenz curve is a function of the cumulative proportion of S∗ mapped onto the
corresponding relative size,

L( j/N) =
j

∑
i=1

si

/ N

∑
i=1

si. (2.31)

For our particular case, if the observable is the nucleation PDF, L(0.1) is the
maximum fraction of the nucleation probability found in 10% of the area. The
Lorenz curve is useful to describe the asymmetry of a given observable. A linear

10 Being n the dimensionality of the system, 2 in our case.
11 Lorenz curves are mostly used in economics to describe inequalities in a given population.
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Lorenz curve from (0,0) to (1,1) indicates a flat distribution, whereas a curve with
L(0)→ 1 indicates a delta distribution.

Figure 2.12a shows the Lorenz curves for many of our observables computed with
extensive statistics. The Lorenz curve for the nucleation PDF is highly asymmetric,
indicating a very sharp distribution. 80% of the nucleation probability is already
found in 20% of the available area, whereas all the network observables are close
to the diagonal. The nucleation probability is indeed much more pronounced than
the fluctuations of any simple local observable of the network. We also find that the
spatial localization increases with the level of clustering (at equal connectivity), em-
phasizing the sensitivity of the phenomenon to the metric connectivity correlations.
This difference between the curves indicates that the small fluctuations in the local
observables must combine in a non–linear way to produce such a sharp nucleation
PDF. Figure 2.12b shows the scaling of the Lorenz curve with system size, the
fact that the Lorenz curve is invariant with system size shows that the nucleation
sites posses a characteristic area. Increasing the system size increases the number
of nucleation sites. If the number of nucleation sites and their properties did not
depend on system size, the distribution would become sharper and sharper with
bigger system size. The dependence of the nucleation sites with system size is also
shown in Figure 2.13 for three particular cases.

In Figure 2.12a we also observe the differences in the Lorenz curves for two
networks with different α but with the same connectivity distribution. In our
networks the average connectivity is proportional to the density, and by keeping
the product ρα constant, we can obtain networks with the same degree distribution
but different clustering coefficient distributions. These Lorenz curves show how the
networks with higher clustering (higher α) have a faster rise, indicating a sharper
distribution. This effect is also shown for two particular cases in Figure 2.14, where
we show the nucleation sites for two networks with different clustering coefficient
distributions.

2.2.3 Inhibition

We have also performed extensive analysis of the nucleation sites and the burst
structure in the presence of inhibitory connections. We generated networks where
20% of the neurons were inhibitory. The inhibitory neurons were modeled with the
same dynamical parameters as the excitatory ones, but with the synaptic currents
twice as strong and twice as long, consistently with GABAA currents. We also
explored the dynamics with more realistic models of interneurons, but the results
remain unaffected.

In our typical parameter ranges, our main results remain essentially unaffected
by the presence of inhibition were not significantly affected. A typical example is
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Figure 2.12 Lorenz curves. a, Lorenz curves of the different observables. The diagonal line
(black) corresponds to a flat distribution. Deviations from the diagonal give a clear image of the
sharpness of a distribution. For the nucleation (yellow) a 20% of the system area contains the 80%
of the probability. Another nucleation curve for networks with α = 1/3 but the same average of
connections per neuron, is shown (blue). Note how the spatial fluctuations of the other observables
(purple) are much smaller. Lines are averaged over 5 different network realizations and the solid
regions show the 95% confidence interval. b, Lorenz curves for the nucleation PDF for a network
embedded in a square substrate with three different sizes. Each curves has been averaged over 10
different network realizations containing ∼1000bursts each. The shape of the PDF scales with
system size whereas the number of nucleation sites is an extensive property of the system (the
bigger the system, the more nucleation sites appear).
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Figure 2.13 Nucleation sites dependence with system size. Comparison of the nucleation sites
for three different networks with the same density ρ =300 neurons/mm2 and α = 2/3 but different
system sizes (with periodic boundary conditions) a, Square network with size L =3.75 mm a,
Square network with size L =5 mm a, Square network with size L =6.25 mm
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shown in Figure 2.15, where we compare the nucleation sites of the same network
with and without blocked inhibition. Inhibition is blocked by setting the inhibitory
postsynaptic currents to 0, while the neurons themselves remain active, consistently
with GABAA–blocking experiments through the use of bicuculline. In both net-
works we observe the same nucleation process, but the locations of the nucleation
sites have shifted. This shift emphasizes the sensitivity of the nucleation process to
the exact wiring of the network, as we will see in the following sections.
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sites and inhibition. Map
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ure 2.11 where 20% of
the neurons are now in-
hibitory, in two different re-
alizations. With inhibition
blocked (E Network) and
without (E+I network). a,
Nucleation sites when inhi-
bition is blocked. b, Nucleation sites when inhibition is active. The structure of the nucleation
sites in both realizations is similar, but their relative strength has changed.

2.3 Experimental results

Before delving further in the burst structure, we now proceed to report the set of
experiments that were performed to corroborate our findings. To be able to resolve
wave propagation in two–dimensional cultures and the presence of nucleation
sites, we need to be able to simultaneously track the activity of thousands of
neurons with enough temporal resolution to observe propagation. As we reported in
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Section 1.3.1, standard MEAs have good temporal resolution, being able to detect
single spikes, but they usually lack spatial resolution due to the limited number of
electrodes available, which also are too far apart. Traditional calcium imaging on
the other hand, allows the simultaneous tracking of many neurons, but its temporal
resolution does not allow the observation of any dynamical structure within a burst.
To overcome these difficulties we concluded that high–speed calcium imaging was
the best choice at the time. Most of the experiments focus on micro–cultures, where
the whole culture can be recorded within the field of view and in young cultures,
were the connections are still developing and propagation speed is low. All the
experiments shown in this chapter were performed by Jordi Soriano and Sara Teller.

2.3.1 Small cultures

To corroborate our numerical findings, the experiments study the initiation and prop-
agation of spontaneous neuronal activity in small, mm–sized cultures of rat cortical
neurons that include 1000−3000 neurons (Figure 2.16a, see also Appendix 2.B).
Activity was monitored through high–speed, high–resolution calcium fluorescence
imaging that provided 5−30 ms recording interval and single–cell resolution (Fig-
ures 2.16b and 2.16c). Cultures with both excitation and inhibition (E+I networks),
and only with excitation after the blockade of inhibition with 40 µm bicuculline
(E networks) were considered. The advantage of working with such small cultures
and high–speed calcium imaging is that all the neuronal activity can be recorded
simultaneously since they all fit within the microscope field of view. Although it is
not possible to detect single spikes, the bursting dynamics at the single cell level
can be fully characterized, with enough temporal resolution to observe differences
in the bursting transition.

Data was obtained from 30−60 min recordings of the individual neuron activity.
About 70 experiments were carried out, exploring different culture sizes, shapes,
and maturation. As shown in Figure 2.16d, activity in the cultures was characterized
by repeated bursting episodes that encompassed the entire culture. The typical inter–
burst interval (IBI) was about 30s for E+I networks, substantially increasing to
about 120s when inhibition was blocked (Figure 2.16e). The IBIs statistics and their
dependence on the presence or absence of inhibitory activity is consistent with previ-
ous studies [Cohen 2008, Tabak 2003, Latham 2000, Soriano 2008, Jacobi 2010].
The distribution of IBIs is peaked at a mean value that is set by the synaptic depres-
sion time, i.e., the characteristic time of the exponential recovery of synapses after
the saturation produced by the global burst [Opitz 2002, Cohen 2011].

The analysis of the individual neuron fluorescence signal allowed us to verify our
numerical findings, revealing that the bursting episodes are not synchronous events
but are mediated by circular waves originated at well–defined centers or nucleation
points. Figures 2.16f to 2.16h show illustrative examples, for both the cases with
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Figure 2.16 Experimental observation of nucleation and propagation. a, Highly contrasted
bright field image of a neuronal culture at day in vitro (DIV) 10, grown on glass and confined
within a circular cavity 3 mm in diameter. Culture contains ' 3000 neurons. b, Bright field image
showing a detail of the culture and the distribution of neurons. The circle identifies a single neuron.
c, Corresponding fluorescence image during a spontaneous activity event. Bright spots are firing
neurons. The resolution of the image is the same as the actual measurements. d, Fluorescence
signal from 30 min recording of spontaneous activity in the culture shown in a, averaged over
the 500 brightest neurons. The top plot corresponds to measurements with both excitation and
inhibition active (E+I network); the bottom one corresponds to excitation–only measurements (E
network), with inhibitory synapses blocked with 40 µM bicuculline. Fluorescence peaks identify
network bursts. The symbols below each burst identify its initiation in a specific area of the culture.
e, Distribution of inter–burst intervals (IBIs, top) and burst propagation velocities v (bottom) for
E+I and E networks. Statistics is based on 6 cultures of identical size and density, at DIV 9-10. On
average, E networks are characterized by larger IBIs and propagation velocities. f,-h, Examples of
the propagation of spontaneous bursts in cultures of different sizes and developmental stages. The
analysis of the onset times of neuronal firing provides the average velocity of the advancing front
and its initiation point (white circle). E+I and E networks show a qualitatively similar behavior,
with a propagation in the form of a circular wave. g, also depicts, for the data shown in d, the
approximate initiation point of each burst. For clarity, nearby initiations are grouped defining the
nucleation sites. Three main initiation sites are identified. The size of the circles is proportional to
the relative occurrence of nucleation events at each site. Localized nucleation occurs both in E+I
and E networks. The location of the nucleation sites and its relative importance is different in the
two networks, and illustrates the sensitivity of nucleation to network details.
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and without inhibitory action. Although previous works [Maeda 1995] hinted at
the presence of activity propagation in large 2D cultures, the existence of such
waves was not resolved before, whereas later studies explored different scenarios
of synchronization [Shein 2008] and percolation [Eckmann 2010]. The spatial and
temporal resolution in these experiments settles this issue and allows measurement
of the wave velocity for the first time. As in the simulations, while the precise points
where these waves are initiated appear distributed throughout the culture, they are
very strongly concentrated in relatively small regions (hereinafter, the nucleation
sites), as shown in Figure 2.16g.

In addition, the temporal sequence of burst initiations, e.g. Figure 2.16d, appears to
be random, with no statistically significant correlation between consecutive events.
Statistical significance in the temporal sequence of burst initiations was analyzed
by grouping individual bursts in clusters. A cluster is defined by all nucleation
points whose distance amongst cluster members is l < ξc, where ξc ≈ 0.26mm is
the connectivity correlation length (see Equation (2.14) for an illustrative example).
Given a sequence of consecutive bursts, we computed the conditional probabilities
P(n+1= xi|n= x j), that define the probability that the burst n+1 belongs to cluster
xi given that the previous burst happened in cluster x j. Then we have compared
these probabilities to the ones obtained from bootstrapped data with the same
statistics and size over many realizations. The results for a particular experiment
are shown in Figure 2.17. Although some apparent correlations can be noticed,
they are not statistically significant with the limited data set. From all our data we
can only conclude that the results are compatible with a very weak (or lack of)
correlation between the locations of consecutive bursts, that is, that the origin of the
next burst is independent from where the previous one started. On the other hand,
the typical experimental average IBI is ∼ 30s, a time–scale associated to synaptic
depression and much larger than any other time–scale involved in the dynamics.
Given that neurons start to fire spontaneously again a few seconds after a burst, it is
improbable that a correlation between the position of successive bursts really exists.
There is no known mechanism that could generate this kind of correlation.

Going back to the nucleation points, a new picture emerges with an appropriate
coarse–graining of the data. Given the set of nucleation sites of a given experiment
(and their errors), a nucleation probability density (PDF) function can be obtained
by smoothing each nucleation site with a Gaussian kernel (whose standard devia-
tion comes from the nucleation site identification error) as shown in Figures 2.18a
and 2.18b (see Appendix 2.B for details). These nucleation PDFs show that nu-
cleation point are not uniformly distributed, but concentrate in specific regions
of the culture. This localization phenomenon can also be quantified by Lorenz
curves as shown in Figure 2.18c. The Lorenz curves show that a small fraction
of the culture ∼ 10% already contains 80% of the nucleation probability, clearly
indicating the high–localization of the nucleation process. The fact that the Lorenz
curves are invariant with system size also, as they were in the simulations, show
that the nucleation mechanism involves a region with a finite extent. Indeed, if the
whole network was involved in the nucleation process, the number of nucleation
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Figure 2.17 Interburst correlations. Left: the identification of the different clusters based on
proximity (3 main clusters and 2 discarded points). Right: experimental conditional probabilities
(purple) and bootstrapped data (orange), error bars correspond to the 95% CI. Only on bursts that
happen after a burst in cluster 3 (P(1|3) and P(3|3) some correlation could be present, but the
result is not statistically significant due to the limited data set.

sites would not increase with system size (and the fraction of area they occupy
would decrease). The Lorenz curves however, remain independent of system size,
thus indicating that there is a typical length scale that controls the area of influence
of a nucleation site. It is reasonable to assume that this scale is given by the average
axon length.

The IBI dispersion observed in the experiments (Figure 2.16e) originates at the
(exponential) time distribution of nucleation events at the different nucleation sites.
We observed that the IBI dispersion decreases for increasingly larger cultures. This
reflects the competition between nucleation sites, consistently with the observation
that the number of nucleation sites scales with the system size (Figure 2.18).

The existence of initiation areas and their strong localization is a robust exper-
imental result, although the details of the nucleation map vary from culture to
culture. Robustness is also exemplified by the similar nucleation scenario with
inhibitory synapses either active or blocked. For the cultures studied here, inhi-
bition slows down burst propagation, facilitates burst termination, and leads to
richer wave propagation patterns, but the nucleation process remains unaffected.
While inhibition is key for more complex activity patterns, like neuronal avalanches,
synchronization and self–organization in general, these effects show up in more
mature cultures. At the onset of the GABA switch, inhibition has not developed
enough to allow a significant change in activity dynamics. Hence, to understand
the mechanisms underlying the nucleation process from now on we will focus on
excitatory networks.
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Figure 2.18 Spatial distribution of nucleation sites in experiments. a,b, Nucleation probabil-
ity densities for a circular culture and a rectangular one at day in vitro (DIV) 9. The top plots
correspond to measurements in untreated cultures (E+I networks); the bottom ones correspond
to measurements in the same cultures after the blockade of inhibitory synapses with 40 µM
bicuculline (E networks). Data is obtained by coarse–graining the burst initiation points of a
given measurement. The number of bursts n observed in each measurement is indicated at the
bottom–right corner of each plot. The small circles in a, are the neurons in the network. Neurons
are not shown in b, for clarity. The grid lines are a guide to the eye. Nucleation is highly localized
in specific regions for both E+I and E measurements. For the circular culture and E+I measure-
ments, nucleation is peaked at the bottom–center of the network. The blockade of inhibition
reconfigures the distribution of nucleation probability, but its degree of localization is similar. The
larger rectangular culture accommodates a higher number of nucleation sites. The blockade of
inhibition changes their location and relative weight while maintaining their strong localization.
c, Lorenz curves for different culture sizes, and comparing E+I (top) and E networks (bottom).
The curves are obtained by plotting the accumulated nucleation probability as a function of the
area fraction of the culture, and after averaging over cultures of similar area and developmental
stage. For both E+I and E measurements, data corresponds to cultures at DIV 9-11 and areas A±1
mm2, with A = 2.5 mm2 (orange, N = 4); 6.1 mm2 (purple, N = 8); and 15.5 mm2 (black, N = 5).
The gray area depicts 95 % confidence interval for the data with the highest standard deviation
(A = 15.5 mm2). The insets provide a detail of the plots. The sharp increase to 1 of the Lorenz
curves illustrates the strong localization of nucleation probability. The different curves collapse
within experimental error, evidencing the scaling of nucleation with system size.
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2.3.2 Big cultures

The nucleation phenomenon is not specific of small cultures, experiments were also
carried with regular–size, 13mm–wide cultures. Figure 2.19 provides an example
of activity propagation in a regular culture, studied at DIV 21. Big cultures have
the advantage that spontaneous activity is richer and more periodic (Figure 2.19a).
Additionally, the entire field of view contains neurons in these experiments (in small
cultures the field of view was larger than the culture), see Figures 2.19b and 2.19c,
and therefore burst initiation and front propagation can be better resolved (Fig-
ures 2.19d and 2.19e). The major disadvantage of big cultures in this experimental
setup is that initiation can occur both in the monitored field of view and in regions
outside. The statistics of nucleation sites is therefore partial. For this reason big
cultures were not used for the study of the nucleation sites distribution.

2.4 Microscopic dynamics and activity avalanches

The experimental results confirm the propagation dynamics and the presence of
heterogeneous nucleation sites, however, they are unable to tell us much about the
mechanisms behind these processes. To gain insights into the mechanisms of burst
initiation, we must go back to our simulation framework.

The strong localization in both time and space, quantified by the small IBI dispersion
and the Lorenz curves respectively, are apparently in conflict with an a priori
scenario of homogeneous nucleation, as the information from the analysis of the
bursting transition suggests (see Section 2.2.1). Indeed, for the phenomenon to
be truly noise-driven and not controlled by specific leader neurons or network
architectures, two puzzles must be solved. First, time localization requires a very
fast nucleation mechanism, in a scale comparable to the spontaneous firing rate of a
single neuron (around 1 Hz). Second, space localization requires that, effectively, the
noise is very unevenly distributed even though the network is fairly homogeneous
and the neurons presumably identical. Here we show that these apparently unrelated
puzzles are solved at a quantitative level by a single phenomenon that we call noise
focusing that arises from the presence of activity avalanches in the microscopic
dynamics.

The simulations are particularly insightful to unveil the detailed build-up process
that leads to nucleation in the form of avalanches of activity. Avalanches in neuronal
networks were first identified in cortical slices [Beggs 2003, Beggs 2004] and later
observed in other experimental conditions [Mazzoni 2007, Tetzlaff 2010] and used,
in particular, in the context of self-organized criticality [Beggs 2003, Beggs 2004,
Levina 2007, Levina 2009, Millman 2010], in situations that differ substantially
from our problem as we will now see.
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Figure 2.19 Experiments on big cultures. a, Spontaneous activity in a neuronal network cul-
tured on a 13 mm diameter glass coverslip, studied at DIV 21 and with only excitation active. Data
corresponds to the average fluorescence signal of ∼1000 neurons. Fluorescence peaks correspond
to network bursts. The histogram shows the distribution of inter–burst intervals (IBIs) along the
total 90 min duration of the recording, and provides an average bursting period of 40 s. b, High
speed (200 frames/s) monitoring of a network burst in a 5.6×1.2 mm2 region of the culture. Onset
times correspond to the occurrence of individual neuronal firing within the burst. Activity initiates
in a small area at the bottom-left corner (white arrow) and propagates towards the right edge of
the region. c, Corresponding spatial distribution of neurons together with the three most frequent
nucleation sites of the region, based on the analysis of 10 bursts. d, Detail of a train of bursts
with their associated nucleation sites. For the burst marked with "?" activity started outside the
monitored region. e, Onset times (averaged over the Y direction of the region) along X, for the
three most frequent nucleation sites. The linearity of the data points reveals the advance of the
activity front at a constant velocity, with its value given by the slope of the least squares fit.

Here we use the term avalanche in its more general meaning, referring to any
cascade of induced activity, i.e., any group of causally connected spikes, usually
initiated by spontaneous firings. These avalanches can be understood as noise being
amplified and propagated through the network. Given its spontaneous (noise driven)
origin, the avalanche statistics will inform us of possible amplification mechanisms.
The spontaneous firing of a given neuron is simultaneously transmitted towards
all its output connections kout , and added to the internal noise of these neurons,
effectively increasing their firing probability. As a consequence, if the noise in these
neurons is above a certain threshold, it can be coherently amplified and be able
to produce large sequences of induced firings. Our dynamics will be dominated
by these avalanches, and we will distinguish between Ignition Avalanches (IA), as
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those that end up nucleating a burst, and Background Avalanches (BA), as those
that eventually die out.

Our numerical approach allows to detect all causal interactions between individual
spikes, that is, to reconstruct the sequences of induced firings, and hence to identify
all avalanches that may be occurring simultaneously, a crucial information that is
virtually inaccessible experimentally.

To do so we start with the first detected spike. Next, we scan all its output neurons
for the occurrence of spikes in a short time window ∼ 2τ , where τ is the charac-
teristic decay time of the post-synaptic current (we choseτ ' 10ms). The process
is iteratively repeated for all the newly detected spikes until no more spikes are
found. When multiple avalanches with different initiation neurons have spikes in
common, they are merged into a single, bigger avalanche. This process is equivalent
to counting clusters in a problem of classical percolation, with the difference that
the time component makes the system effectively infinite.

All avalanches eventually die out, i.e. no more correlated spikes are found with 2τ ,
and are considered as Background Avalanches (BAs) of size n, with n the number
of spikes involved and duration T being T the time difference between the first and
the last spike. Any avalanche that recruits over 95% of the population in a very short
time window (usually 2τ), however, is considered an ignition avalanche (IA) and
is separated from the BA set. This fast recruitment is what defines a burst, hence
this avalanche has a completely different structure than the others and can then
be separated in two parts: the Ignition Avalanche (IA) (the precursor of the burst)
and the burst itself. IAs have the characteristic signature of a steep amplification
of activity over time, which is not present in BAs. Note that the separation point
between the IA and the burst is arbitrary, and in our case we define it by when the
activity rate slope changes from an exponential increase to a quadratic increase, as
we will later see.

2.4.1 Background avalanches

In Figure 2.20 we show the distribution of BAs sizes and durations. In Figure 2.20a
we observe a clear scaling relation, over 2 decades in size and 6 in frequency,
independent of network properties, with an universal exponent close to the one from
classical percolation in a Cayley tree, ∼ 5/2 [Albert 2002]. For larger avalanches
however, this scaling relation starts to break down and becomes more sensitive to
the specific details of the network. Does that mean that our system is in a critical
state? Not quite. To understand what is going on we need to understand how our
system evolves during bursts. Right after a burst, synapses are completely depressed,
and although the neurons can spontaneously fire, they are unable to transmit any
signal to their neighbors. In this regime, the firings are completely uncorrelated,
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Figure 2.20 Statistics of Background Avalanches (BAs). a, Statistics of BAs for networks with
different connection probability α and different density ρ . The mean connectivity is fixed at
〈k〉 ∼ 70. The avalanche size distribution shows power-law statistics for almost three decades. b,
Relationship between avalanche duration and avalanche size for the same networks as in a,. Inset:
the curves collapse into a single one when rescaled with the connection probability α , although
deviations start to appear at larger sizes. In all cases the calculated exponent is below 1. Each curve
from a, and b, is averaged over 5 different network realizations and over 3 hours of simulated
activity.

and if we tried to detect avalanches we would observe a curve consistent with a
Poisson process (since the firings are uncorrelated). While the system is recovering,
however, the connections are being strengthened, and the neurons are able to induce
firings in their neighbors so the system is effectively subcritical. If the connections
keep being strengthened, there will be a point when a single spike is able to induce
more than one firing in average (characteristic of supercritical behavior), when
this happens however, a burst can also develop (which is different from a large
avalanche), triggering the nucleation process, wave propagation and complete
activity saturation. So our system is continuously evolving from subcritical to
supercritical, thus crossing the critical state in between. Averaging all over these
phases results in the curve observed in Figure 2.20a, the system is always moving
around the critical regime12 but never being exactly there.

Why is the exponent so similar to that of percolation in a Cayley tree? The defining
feature of a Cayley tree is the absence of loops (zero clustering coefficient), and our
networks are far from that, as they are highly clustered. As we will see the answer
relies in the fact that our process is dynamical, and neurons can fire multiple times
in a single avalanche.

12 This is not SOC.
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A Cayley tree (also known as a Bethe lattice) is a loopless network where each
node (neuron) has the same number of connections z (coordination number). In a
Cayley , the cluster (avalanche) size distribution ns is calculated as follows. The
first node is chosen randomly (since the tree is loopless and infinite they are all
equivalent) and ignited with probability p. If it is ignited, the same is performed
with its z neighbors. For those neighbors that were ignited, the process is repeated
with its z−1 neighbors (since one of the nodes is already ignited, the precursor),
until no nodes can be ignited. The total number of nodes that were ignited n define
the cluster size. It can be shown [Albert 2002] that around the percolation threshold

ns ∝ s−5/2e−cs with c ∝ (p− pc)
2 (2.32)

where pc is the percolation threshold. It is also easy to see that pc = 1/(z−1). On
average, a node will ignite p(z−1) new nodes. So only when p(z−1)≥ 1 we can
obtain an infinite cluster. Below that the cluster will eventually stop. Above that,
however, the cluster size will increase exponentially. Note that a Cayley tree is
essentially a random graph with fixed degree, since both show zero clustering in
the limit N→ ∞.

If we look closely to the way the clusters are computed in a Cayley tree we can see
the parallelism with our activity avalanches. If we consider that each iteration in the
cluster formation takes a time ∼ τ , this becomes equivalent to the time it takes for a
given spike to induce another in any of its neighbors. In highly clustered networks,
as is our case (usually 〈CC〉 ' 0.3) the percolation transition differs because the
number of available neighbors at every iteration is reduced because of the loops.
Since our process is dynamical however, given that our degree is large 〈k〉 ≥ 70 and
we are close to the percolation threshold, after a few iterations the neurons have
returned to their resting state and can be activated again, essentially making the
system infinite and loopless.

This parallelism helps explain the universal exponent −5/2 found for BAs, as
shown in Figure 2.20a. The region of interest for wave nucleation, however, is
that of large avalanches, where the presence of loops is statistically significant and
breaks that scaling. It is also important to compute the distribution of avalanche
times (see Figure 2.20b), the fact that the exponent is close to 1 further indicates
that the system is close to the percolation transition, and that the internal avalanche
structure is self–similar (an avalanche twice as large, lasts twice as long and so on).
The exponent, however, is not strictly one (it is slightly smaller) and depends on the
clustering of the network, the deviations being more apparent at large avalanches.
This indicates that larger avalanches have a smaller duration when the clustering
is high, and this is caused by the fact that when the avalanches are large, loops
enhance the probability of induced firings, as we will later see.

A typical BA is shown in Figure 2.21. Its spatio–temporal structure is quite complex
(see Figure 2.21a) and is better observed when mapped to the unit circle (see Fig-
ure 2.21b). In this representation the internal structure of the avalanche is revealed.
Almost no neuron spikes twice in the avalanche, which would be represented by
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Figure 2.21 Structure of Background Avalanches. a, Spatio–temporal structure of a back-
ground avalanche composed of 91 spikes in a 5 mm–wide circular network with 〈k〉 ∼ 70,
ρ = 300neurons/mm2 and α = 2/3. Big circles correspond to the neurons that fired during
the avalanche (color coded by the first time they fired) and the involved connections. This particu-
lar avalanche starts in a small area, spreads out and dies. In gray, all the other neurons that did not
participate. b, The avalanche structure is mapped to a circular graph where the angle represents
firing time. Each neuron is positioned across the circle by the first time they fire (denoted by a
small line). Causal interactions are represented by curved paths whose curvature depends on the
time difference between the two firings and color–coded by the first.

a backward connection in the graph (a dark line connecting to a light area), and
the temporal profile fluctuates greatly. There are many spikes in the first 10 ms, but
only a few are able to propagate past that point. Around the 40 ms mark the activity
increases again to finally die out 90 ms after the first spike.

2.4.2 Ignition Avalanches

As we have discussed in Section 2.4, the significant difference between BAs and IAs
is that the later are responsible for wave nucleation. The initiation of a wave requires
the simultaneous excitation of a sufficiently large nucleus to sustain it, typically
of the size of the connectivity correlation length. Following Refs. [Cohen 2010,
Tlusty 2009], this will be achieved whenever a quorum percolation condition is
satisfied in a region of this critical size, requiring the simultaneous excitation of the
critical percolation fraction in that region.
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We may estimate the quorum percolation condition as follows. If we keep the
connectivity correlations of the metric network, and neglect the dynamic correla-
tions between neuron firings, then we do not need to compute the probability of
percolation of the entire network. Only the probability to obtain a minimum number
of simultaneous firings (the critical fraction) within a spatially correlated area. This
area is sufficiently large so that metric correlations will then do the rest and induce
percolation in the entire system. This is similar to what we did in Section 2.2.2 to
generate the percolation map from Figure 2.11d. This time, however, we want to
calculate the time it takes for the system to reach the critical fraction in a given area
spontaneously.

Within a correlated area, the network can be treated as a (finite) random graph of
Nc neurons, with a critical percolation fraction of the order of m0/〈k〉 or larger, so
the number of spontaneous firings that must occur within a ∆ t in that area must be
at least

nc ∼ Ncm0/〈k〉. (2.33)

A conservative estimate of the probability of percolation induced by spontaneous
firings of frequency ω0 of a nucleus with Nc neurons would scale as

Pperc ∼P(nc,Ncω0∆ t)∼ exp(−Ncω0∆ t)(Ncω0∆ t)nc/nc! (2.34)

where P is the regularized Gamma function. For typical values in experiments
and simulations this estimation is off by many orders of magnitude because of
the strong dependence on the small parameter ω0∆ t. For a typical example of our
simulated cultures, we find that a minimum number of nc ∼ 20 neurons must be
excited out of the Nc ∼ 85 contained in a circle of radius 0.26mm. With ω0 ∼ 0.4Hz
and ∆ t ∼ 20ms we have Pperc ∼ 10−23. These extreme values cannot be brought
significantly close to realistic ones values by replacing the quorum m0 and the
firing frequency ω0 by some renormalized values along the lines discussed above.
The failure of the percolation estimate dramatically illustrates the importance of
dynamic correlations of the neuron firing, that manifest in the form of avalanches.
Within our dynamical scenario, the critical event is the occurrence of an IA, that
is, an avalanche that excites the local critical percolation fraction. The probability
of such an event is much larger, not only because big avalanches occur relatively
often, but also because the area that contributes to the formation of such avalanches
is much larger than the nucleation sites, where they project the activity.

The statistics of the IAs are shown in Figure 2.22. These avalanches can form and
slowly build up their activity for a whole second before a burst is detected. These
kind of exponential growth (see Figure 2.22a) in the ’preburst phase’ is consistent
with previous results with MEA data [Eytan 2006]. When this exponential growth
stops and becomes polynomial (defined as t = 0) indicates that the wave has formed
and starts to propagate. When the wave is propagating, every neuron is receiving
a huge amount of inputs, and is firing at its maximum frequency. At this point its
temporal evolution is purely dominated by its internal dynamics, and the network
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has almost no effect, as observed after t = 0 when the plot is normalized by system
size (see Figure 2.22b).
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Figure 2.22 Statistics of Ignition Avalanches (IAs). a, Temporal profile of activity during the
IAs. The same set of networks from Figure 2.20 are used. The activity growth during the IAs
follows exponential distributions up to the end of the IA that sets the temporal scale origin, moment
at which a faster growth describes the formation of the burst. a, Activity growth in the region
where the IAs transforms into a burst, normalized by system size. The growth during the bursting
phase becomes independent on the connectivity probability α , consistent with the fact that the
bursting phase is governed by the neuronal dynamics.

Given the size and buildup structure of IAs, their structure becomes more complex
and rich than the one observed in BAs. A typical example is shown in Figure 2.23.
From the analysis of the IAs structure it is clear that activity travels throughout the
system, but is only being amplified at specific regions or paths, whose convergence
later defines the nucleation sites. This amplification also happens extremely fast, the
fact that most connections and neurons are only triggered once during an avalanche
indicates that it is not a build up process where activity is increasing within a subset
of neurons. It is actually the convergence of activity, the focalization of noise, what
triggers the explosion and posterior wave formation. This mechanism, which we
call noise focusing explains how a very low level of noise is enough to trigger burst
formation in a highly heterogeneous way. It is based on the high anisotropy of the
amplification mechanisms, which in turn are enhanced by metric correlations in
the network and the non–linearities of neuronal dynamics, as we will now see by
analyzing the different mechanisms of noise amplification.



2.5. Noise Amplification 75

tim
e

80 1600 time (ms)a b

1 mm

Figure 2.23 Structure of Ignition Avalanches. a, Spatio–temporal structure of the first
2000 spikes from an Ignition Avalanche in the same network of Figure 2.21. Notice how in
this case the avalanche spans almost the whole system, but the activity build up occurs in a smaller
region which correlates to the nucleation site. b, Mapping of the avalanche structure to a circular
graph (see also Figure 2.21b for details). Around t =50 ms activity slowly increases (shown by the
accumulation of spikes) but the explosion of activity that will trigger the burst starts at t =150 ms.
Until the explosion (ignition), activity travels through different neurons and connections without
repetitions. Those only start to occur after t =150 ms, seen by the dark blue lines that cross the
circle.

2.5 Noise Amplification

The different mechanisms of noise amplification are better understood within a
simplified version of the neuronal dynamics. A neuron is an integrate–and–fire
unit, and it fires whenever its membrane potential reaches a given threshold after
integrating its input current within a certain time window ∆ t. The total input current
coming from other neurons adds up to the internal noise of the neuron, that in
our case are the spontaneous discharges caused by minis (see Section 2.1.1). In
the absence of noise, a minimum quorum of m0 inputs from other neurons is
required to fire [Cohen 2010]. In the presence of noise however, a neuron has a
finite probability to fire with m < m0 (sub–quorum firing). The case m = 0 defines
the spontaneous firing rate ω0. For m > 0 (induced firing), the firing probability
pm increases nonlinearly with m as we will now see. This nonlinear growth of the
probability of firing in the sub–quorum regime is what we call dynamical noise
amplification. Noise can also be amplified by the presence of loops in the network
(intrinsic to the metric structure of the network), since any spontaneous firing will
induce strong correlations in the probability of firing of its neighbors. We call this
mechanism topological noise amplification.
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2.5.1 Dynamical noise amplification

To gain quantitative insight, we may assume for simplicity that the noise in each
neuron takes the form of a Poisson shot process with frequency λ and that the input
from a firing neuron just adds another shot of the same amplitude. The neuron
fires whenever it accumulates at least m shots in a time window ∆ t. Under these
assumptions the probability pm of firing if it receives m inputs from other neurons
reads

pm = e−λ∆ t
∞

∑
i=m0−m

(λ∆ t)i

i!
= P(m0−m,λ∆ t), (2.35)

where P(m0−m,λ∆ t) is the regularized gamma function, a monotonically non-
decreasing function of m, that is increasing from the value p0 that sets the spon-
taneous firing rate, ω0 ∼ p0/∆ t, to pm = 1 for m = m0 (see Figure 2.24a). For
m′ > m0 the analytical continuation of this function to negative integer values of its
first argument yields the correct values pm′ = 1. P(m0−m,λ∆ t) quantifies in this
simplified model how the probability of induced (sub-quorum) firing is enhanced
by inputs from other firings. The maximum sensitivity of the firing probability to
the addition of a single input occurs for ε ≡ λ∆ t/(m0−1)∼ 1. The parameter ε is
an appropriate measure of the noise intensity, and is typically smaller than 1.

If we quantify the importance of sub-quorum firing in terms of the quorum fraction
f (pc) = m∗0/m0, as the required number of inputs m∗0 that gives a firing probability
of pc, that is, by the implicit equation

P(m0−m∗0,λ∆ t) = pc, (2.36)

then for sufficiently large m0, P(m0−m,λ∆ t) has a narrow sigmoid shape with
fast variation between 0 and 1 centered around m∗0 ' (1− ε)m0 (see Figure 2.24a).
Specifically, one can show that

lim
m0→∞

P(m0(1−η),ε(m0−1)) =Θ(η− (1− ε)), (2.37)

where Θ is the Heaviside step function. Therefore, for large m0 one may unambigu-
ously define an effective quorum fraction f ∗ = 1− ε , such that for m < m0 f ∗ the
firing probability is pm ' 0 while for m > m0 f ∗ it is pm ' 1.

The consequences of this noise amplification mechanism are further studied in
Chapter 5.
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Figure 2.24 Noise amplifica-
tion mechanisms. a, Dynam-
ical noise amplification. Left:
schematic representation of the
mechanism, where a subset of
m (from a total of n) firing
neurons projecting over neuron
B induces a firing probability
pm. Right: dependence of pm
with the input fraction. The fir-
ing probability is greatly ampli-
fied before the quorum perco-
lation condition m0 is met. b,
Topological noise amplification.
Left: Schematic representation
of the effect of feed-forward
loops in the induced firing prob-
ability of neuron C. Right: criti-
cal fraction fn′ of input neurons
Ai needed to activate neuron C
with a probability 1/2 as a func-
tion of the number of feed-forward loops formed with the intermediate B j neurons.

2.5.2 Topological noise amplification

To pursue the influence of the network wiring in the amplification of the firing
probability we can compute the effect of a feed forward motive as that depicted
in Figure 2.24b, where n neurons A1, ...,An are connected directly to a neuron
C, and indirectly through a set of n′ intermediate neurons B1, ...,Bn′ , forming n′

independent feed-forward loops between A and C. If there are no other connections,
the firing probability of C pnn′ if the set Ai fires together within a ∆ t can be expressed
as

pnn′ =
n′

∑
k=0

(
n′

k

)
pk

n(1− pn)
n′−k pk+n. (2.38)

This ’dressed’ probability of induced firing is significantly larger that the ’bare’
induced probability pn. In particular, one may compute the dressed critical fraction
fn′(pc), as the quorum fraction in the presence of n′ feed-forward loops, and see
that this drops monotonically with n′, with the fastest decay for small n′, as shown
in Figure 2.24b. The extension to more complex wiring however, must be explored
numerically.

The effects of the topology on the underlying dynamics are further studied in
Chapter 3.
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2.6 Noise focusing

The two noise amplification mechanisms discussed before are enhanced by the
presence of metric correlations in the network, and are highly sensitive to the local
wiring. The growth of avalanches at a given point in the system will be statistically
biased towards the directions of stronger amplification. These ’prefered’ directions
however, are only revealed after time–averaging over many avalanches, resulting
in a clear picture in the form of effective networks and activity flows. These two
representations allows us to characterize the noise focusing mechanism as we will
now see.

2.6.1 Effective networks

The complex internal structure of the activity avalanches is revealed after a correct
time–averaging. Instead of focusing on the activity of neurons during avalanches, we
focus directly on the connections. The information obtained from time–averaging
neuronal activity is equivalent to calculating the individual firing rate of the neurons,
and we have already seen in Figure 2.11c that they are not a good indicator of the
internal dynamics. Instead, we weight each connection by the number of times it
participates in an avalanche, i.e., it is involved in two causally–connected firings.
This operation creates a new network which is a weighted version of the original
(structural) one. If we now apply a certain threshold to only keep the most active
connections we obtain an effective network that shows the structure of the most
active connections and the subnetwork they might form.

In Figure 2.25a we show the effective network for a particular case which contains
the top 1% of most active connections during BAs. These connections only involve
about 25% of the neurons. The structure of such a ‘dressed’ network is remarkably
different from the original ‘bare’ network. Not only is it strongly inhomogeneous in
space, but also exhibits a more hierarchical structure, with a fundamentally different
degree distribution consistent with a power-law (see Figure 2.25d). A community
structure, also appears, as indicated by the different colors in Figure 2.25a. Many
of the modules concentrate around the nucleation sites (presented in Figure 2.25c),
however, a substantial amount also appear far from the nucleation sites. The con-
struction of this effective network prunes the less active links, effectively filtering
the small avalanches, those that are self-similar and essentially homogeneous and
isotropic, while keeping the contribution of large avalanches, which grow selec-
tively in more specific locations and directions as a result of the noise focusing
mechanism.

An equivalent effective network can be constructed with only the IAs, as shown
in Figure 2.25b. Notice how the IAs effective network emerges as a subset of the
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Figure 2.25 Effective networks. a, Spatial representation of the background avalanche activity
in a circular culture 5 mm–wide and density ρ =300 neurons/mm2, with an average connectivity
of 〈k〉 ∼ 70. Only the top 1% of the most active connections that participate in the avalanches
are shown. Different colors identify communities according to standard community detection
algorithms [Blondel 2008]. The background activity forms a subnetwork clustered in specific
regions of the culture containing only 25% of the total population. b, Spatial representation of
the ignition avalanche activity from the same network in a,. c, Nucleation probability density,
coarse–grained over the connectivity correlation length scale of 0.26 mm. Each nucleation point
is defined by the geometrical center of the neurons that are the first to fire in a burst. Their
distribution is highly localized in specific regions of the system which define the nucleation sites
(3 in this case). The nucleation sites are more focused than the IAs activity itself. d, Degree
probability distribution p(k) of the different networks and subnetworks studied. The distribution
of the IA (yellow) and BA (blue) subnetworks is completely different from the structural one
(black), and shifts from a Gaussian-like profile to one that is consistent with a scale-free network.
The distribution of a randomized version of the original connectivity, with only 1% of the links
taken at random, is also shown for comparison (purple).
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BA one, more concentrated in fewer modules. All the modules in the IAs effective
network are located around the nucleation sites, clearly showing how the activity
of IAs concentrate around the nucleation sites. The smallest nucleation site from
the left however, is missed out, partially because the activity that concentrates there
comes from a wide area and is not as concentrated. This reflects the importance of
spatio-temporal correlations in the avalanche dynamics that have been removed by
the time-averaging. Remarkably, not even the characterization of these subnetworks
is sufficient enough to fully identify the nucleation sites.

Figure 2.25d shows how the effective network structure is shaped by the dynamics.
The original network connectivity distribution has a Gaussian profile, while both
the BA and IA effective networks resemble a power–law distribution, with a few
nodes acting as hubs. These hub neurons are not particularly more active than the
other neurons, but they are able to amplify its activity much more effectively.

As a side note, let us point out that the presence of these effective networks also
reveals the complexity of the problem of network inference in neuroscience. Any
network reconstruction method that is based on activity recordings will be heavily
influenced by the presence of these networks, and the resulting reconstruction might
be more closely related to this network than to the structural one (even in a system
as ’simple’ as a neuronal culture).

2.6.2 Activity flow

A new picture emerges if, instead of focusing on the network structure, we identify
where the activity flows to during ignition avalanches. Every IA ends up nucleating
a wave at a specific point in the system, and we can assign a unit vector to every
neuron that participates in the avalanche that points towards the nucleation point.
This method overcomes many of the problems from the other analyses, namely
heterogeneity and variability. By directly correlating every participating neuron
with the final nucleation point we are actually taking into account the long range
spatio–temporal correlations and averaging over all possible paths. After iterating
over many avalanches, we can finally coarse–grain the resulting vectors to create a
flow map (as we did with the other observables and the network maps). Instead of
plotting the flow map itself we plot its streamlines, which better describe the flow.
In Figure 2.26 we see the streamlines for the same network presented in Figure 2.11.
The two nucleation sites now clearly appear as sinks of activity. Activity originating
in regions away from the nucleation sites flow, on average, towards them following
the corresponding streamlines. This picture also clearly shows the effective basin
of attraction of each nucleation site, i.e, its area of effect, which in this particular
case appears to be around 2 mm–wide. The small nucleation site in the bottom left
creates a perturbation to the streamlines that go to the nucleation site on the right,
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and on average, is not strong enough to focalize its activity. Most of the activity
around that region will flow towards the other nucleation site.

Figure 2.26 Activity flow. Streamlines of
the average flow of Ignition Avalanches (IAs)
superimposed on the nucleation PDF from
Figure 2.11. For every IA we assign a unitary
vector to each participating neuron pointing
towards the nucleation point of that IA. Aver-
aging over all the IAs results in a vector field
whose streamlines define the basins of attrac-
tion of the different nucleation sites. Neurons
outside the nucleation sites still have a pre-
ferred direction and contribute to the IAs. The
basins of attraction also fix the characteristic
area of influence of a particular nucleation
site, in this case being around 2 mm–wide.

0.00 0.11 0.35 0.460.23
nucleation PDF (mm-2)

2.7 Discussion and conclusions

The flow pattern of the IAs that emerges after averaging in Figure 2.26 yields
the key insight into the new scenario that solves the puzzles mentioned in Sec-
tion 2.4. Nucleation sites can be pictured as sinks that collect the large–avalanche
activity over large basins of attraction. At the root of this flow pattern we identify
two mechanisms of noise amplification that are inherent to an integrate-and-fire
directed network, and that are enhanced by metric correlations: (i) a dynamical
noise amplification, associated to the nonlinear growth of the probability of sub-
quorum firing; and (ii) a topological amplification, related to the growth of the
probability of induced firing mediated by connections with other neurons. The
high sensitivity of these mechanisms to local details of the network, implies that
the growth of avalanches at a given point will be statistically biased towards the
directions of stronger amplification. The directionality of avalanches will thus be
more pronounced for larger ones. Within this picture, what promotes a given region
into a strong nucleation site is the confluence of paths of large amplification. The
existence of such a non-local component in the selection of the nucleation sites
can be checked experimentally for instance by observing the rearrangement of the
nucleation probability distribution after cutting off a distant part of the network (see
Section 2.A.2).
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The strong spatio-temporal localization of the noise-driven activity due to sensitive
noise amplification in integrate-and-fire networks is what we call noise focusing.
The emerging scenario is opposite to a common view that pictures the local origin of
the bursting as a recruitment of activity from the surroundings of highly active neu-
rons or groups of neurons, possibly synchronized through some type of sub-network.
In contrast, our nucleation sites do not actively initiate the ignition process, but
collect and amplify activity originated elsewhere. Moreover, the effective network
that we find emerges as a dynamic, collective phenomenon and neither reflects an
inherent heterogeneity of the network nor provides a synchronization mechanism.
Interestingly, an effective power-law degree distribution, a feature that has been
associated to the burst activity growth [Eckmann 2010], emerges naturally from the
dynamics.

The noise focusing effect is a basal phenomenon that should be present to some
extent in any neuronal tissue. This should be specially relevant in early stages
of neuronal network development when no additional biological traits, such as
the presence of specific connectivity layouts, neuronal types or plasticity effects,
could eventually mask or tame the noise focusing effect. Regarding this point, we
have observed that the presence of nucleation sites and waves could be perfectly
characterized in the experiments discussed here (up to 18 DIV). The analysis
become more difficult at later stages of development as the network dynamics
became gradually more complex, specially in the presence of inhibition. Hence, our
description of noise focusing in cultures is especially relevant to young ones, in a
stage often referred to as ’initial’ in the literature [Wagenaar 2006a, Tetzlaff 2010].

A cultured neuronal network at early stages of development behaves as a homoge-
neous and isotropic excitable medium with regard to the propagation of large-scale
excitation waves. The existence of an underlying network of integrate-and-fire
elements however, endows the background spontaneous activity with a complex
spatio-temporal structure in the form of avalanches. The scrutiny of the particular
avalanches that are capable to ignite the bursts reveals the sensitivity of the noise
amplification mechanisms to network details, and leads to a strong spatio-temporal
localization of peaks of spontaneous activity, i.e. noise focusing.

Noise focusing highlights the complex interplay between structure and dynamics in
neuronal systems. A single structural network can entail many functional networks
within, and reconstructing these effective networks directly from the dynamics
might be more revealing than looking directly at their ground–truth topology. In
this context, information–theoretic approaches have been recently introduced to
infer effective connectivities directly from spiking data [Ito 2011] and also from
calcium imaging data [Stetter 2012].



2.8. Acknowledgments 83

2.8 Acknowledgments

Part of the computational framework developed in this chapter has been done in
collaboration with E. Álvarez–Lacalle. All the experiments presented here were
performed by J. Soriano and S. Teller.



84 2. Noise focusing: the emergence of coherent activity in neuronal cultures



85

Appendix

2.A Additional experiments

A complementary series of experiments that were inspired by the theory were also
carried out. They provide direct evidences of the sensitivity of the nucleation process
on both network architecture and background neuronal activity. The experiments
strengthen the validity of the theoretical framework and the simulation approach.
These experiments show that changes in temperature modify the nucleation sites,
hinting at the importance of noise in neuronal network dynamics. They also show
that a modification of the architecture of the network through ablation of neurons
and connections considerably changes the distribution of nucleation sites, revealing
the nonlocal nature of the nucleation process and the subtle interplay between
connectivity and dynamics.

2.A.1 Influence of temperature

The chamber in the experimental setup that contains the neuronal culture is equipped
with a temperature controller in the range 25 ◦C to 50 ◦C. To test temperature effects,
in a typical experiment activity was first measured for 30 min at 25 ◦C in a culture
with both excitation and inhibition active (E+I network), then switched to 37 ◦C,
and measured again for another 30 min. Next, inhibition was blocked with 40 µM
bicuculline (E network) and repeated the measurements at the two temperatures. In
total N = 6 cultures were investigated with similar size (7.3 mm2 in area), density
(400 neurons/mm2) and maturation (day in vitro, DIV, 16−18).

In general the experiments showed similar results with both temperatures, with no
qualitative difference in activity. Global bursts of spontaneous activity appeared
at both temperatures, and with similar shapes. Nucleation points and propagation
velocities could also be described well. For each experimental condition the analysis
consisted of n = 20−60 bursts, were the inter–burst interval (IBI) and the velocity
v of the propagating front were obtained. The results are shown in Figure 2.A.1b.
Within experimental error we could not observe any difference in the overall
dynamics of the network due to temperature. However, we did obverse a significant
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Figure 2.A.1 Temperature influence. a, Comparison of the values for the inter–burst intervals
(IBIs) and front velocity for cultures studied at two temperatures, 25◦C and 37◦C, and two
connectivity conditions, E+I and E. Statistics is based on N = 6 cultures of 7.3 mm2 in area at
DIV 16−18, with n = 20−60 bursts analyzed for each temperature and condition. b, Nucleation
probability distribution for a culture studied at two temperatures, 25◦C and 37◦C, at DIV 18 and
with only excitatory synapses active. Culture size was 4 mm2×2 mm2. Small gray–yellow circles
are neurons.

variation in the distribution of nucleation sites, as shown in Figure 2.A.1a for a
culture with only excitatory synapses active. The foci of nucleation displaced from
the top areas of the culture to its left–center areas as the temperature increased.
Although temperature has a complex role in neuronal dynamics, we hypothesize
that, in the context of our noise focusing model, temperature may increase the
spontaneous release of neurotransmitters, therefore increasing the background
activity of the network. This, in turn, may modify the frequency and structure
of activity avalanches, ultimately modifying the spatial distribution of nucleation
events.

2.A.2 Modification of network circuitry through cutting

The alteration in the spatial distribution of nucleation sites was studied by removing
of a small region of the neuronal culture. These experiments were carried out in
cultures with both excitatory and inhibitory synapses active (E+I network), and at
DIV 12−13. E+I networks are convenient since they provide the maximum firing
rate and therefore rich nucleation statistics. In a typical experiment spontaneous
activity was first measured in 3 mm diameter mini cultures for about 40 min. Next,
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with the help of a scalpel, a cut was performed in a small region of the culture
and spontaneous activity was measured right after for another 40 min. The cut
out region contained about 15−20% of the neurons of the original network. The
distribution of nucleation sites was calculated both before and after the damage.
The study was carried out for N = 4 different cultures of equal size and nominal
density. Initiation statistics is based on n' 50 bursts per experimental condition.

nucleation PDF (mm-2)

1mm

before cut after cut

0 1.4 2.8
nucleation PDF (mm-2)
0 2.5 5.0

Figure 2.A.1 Circuitry
modification. Comparison
of the nucleation probability
distribution for a 3 mm
diameter culture before and
after damaging the network
with a sharp blade. Culture
was studied at DIV 12 and
had both excitatory and
inhibitory synapses active.
The black lines shows the
position and length of the
incision. Neurons are shown
as small gray–yellow circles.
Neurons in the cut out region
are shown in a lighter color. Nucleation statistics is based on n = 30 bursts before the cut, and on
n = 57 bursts after. Spontaneous activity recordings lasted 35 min in both cases.

The results for a particular culture are shown in Figure 2.A.1 Before the cut, initia-
tion switched between two well separated nucleation sites, a big one at the top–right
of the culture, and a smaller one at the bottom-left. After the cut, the small nucle-
ation site (at the vicinity of the damaged region) disappeared, while the remaining
one (located at about 1 mm from the damage) changed its spatial configuration.
We note that the cut not only eliminated a number of neurons and associated back-
ground activity, but also their input and output connections, effectively remapping
the flow of activity in the culture. Interestingly, the average activity of the network
increased after the damage, and illustrates the subtle interplay between connectivity
and activity. In the framework of the noise focusing phenomena, the spatial modifi-
cation of the nucleation distribution probability has a clear interpretation: a series
of avalanches that originated in the left side of the culture and that possibly ended
on its right side were completely eliminated.
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2.B Experimental methods

2.B.1 Culture preparation

Rat cortical neurons from 18–19-day-old Sprague-Dawley embryos were used
in the experiments. All procedures were approved by the Ethical Committee for
Animal Experimentation of the University of Barcelona. Following [Segal 1992,
Soriano 2008], dissection was carried out in ice-cold L-15 medium enriched with
0.6% glucose and 0.5% gentamicin (Sigma-Aldrich). Embryonic cortices were
isolated from the rest of the brain and neurons dissociated by gently pipetting
through gradually narrower pipette tips.

Cortical neurons were plated on 13 mm glass coverslips (#1 Marienfeld-Superior)
that contained a pierced PDMS mold, as illustrated in Figure 2.B.1a. Prior to plating,
glasses were washed in 70% nitric acid for 2 h, rinsed with double–distilled water
(DDW), sonicated in ethanol and flamed. During glass cleaning, several 13 mm
diameter layers of PDMS 1 mm thick were prepared and subsequently pierced with
biopsy punchers (Integra-Miltex) of diameters in the range 2−5 mm. Each pierced
PDMS mold typically contained 5 to 8 cavities, either circular or quasi–rectangular
by overlapping consecutive pierced areas (Figure 2.B.1b)). The PDMS molds were
then attached to the glasses and the combined structure autoclaved at 120◦C, firmly
adhering to one another. Each combination of glass and PDMS was placed in 15
mm diameter culture wells for neuronal plating and maintenance. To facilitate a
homogeneous distribution of neurons in the cultures, the PDMS–glass structure was
incubated overnight with 0.01% Poly–l–lysine (PLL, Sigma). For each dissection
24 wells were prepared, giving rise to about 100 mini–cultures of areas in the range
2−20 mm2. Bigger cultures were also prepared by plating the neurons directly on
the 13 mm diameter glass coverslips.

Cultures were incubated at 37◦C, 95% humidity, and 5% CO2 for 4 days in plating
medium [90% Eagle’s MEM —supplemented with 0.6% glucose, 1% 100X gluta-
max (Gibco), and 20 µg/ml gentamicin— with 5% heat–inactivated horse serum,
5% heat–inactivated fetal calf serum, and 1 µl/ml B27]. The medium was next
switched to changing medium [90% supplemented MEM, 9.5% heat–inactivated
horse serum, and 0.5% FUDR (5–fluoro–deoxy–uridine)] for 3 days to limit glia
growth, and thereafter to final medium [90% supplemented MEM and 10% heat–
inactivated horse serum]. The final medium was refreshed every 3 days by replacing
the entire culture well volume. Plating was carried out with a nominal density of 1
million cells/well (5000 neurons/mm2). The actual density of the neuronal culture
was measured at the end of each experiment by counting the number of active
neurons, and ranged between 500 and 700 neurons/mm2. Figure 2.B.1b shows an
actual culture 11 days after plating. A detail of the culture depicting the neurons
is shown in Figures 2.B.1c to 2.B.1d Although neurons grew both over glass and
PDMS, the connectivity between the top and bottom areas was minimal. The PDMS
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Figure 2.B.1 Neuronal cultures. a, Schematic representation of the culturing process by using
pierced PDMS molds (blue) attached to glass coverslips (yellow). The preparation process (top)
included piercing, autoclaving and poly–l–lysine coating; the culturing process (center) yielded to
the formation of mini–cultures in the pierced areas; the final process (bottom) consisted in the
removal of the PDMS mold and the preparation of the culture for the measurements. b, Actual
image of combined glass–PDMS structure 11 days after plating. The rectangular area depicts the
maximum field–of–view (FOV) of the camera (8.2×6.1 mm). c, Bright field image of a small
region of a culture. Round objects are neurons’ cell bodies. d, Corresponding fluorescence image
integrated over 200 frames. Bright spots are firing neurons.

was gently removed before measuring, and no substantial damage in the network
was detected after PDMS removal.

2.B.2 Experimental setup and imaging

Neuronal activity was studied at day in vitro 9–18, which corresponds to a state of
development sufficiently mature for the culture to show rich spontaneous activity.
Prior to imaging, and after removing the PDMS mold, cultures were incubated for
40 min in External Medium (EM, consisting of 128 mM NaCl, 1 mM CaCl2, 1 mM
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MgCl2, 45 mM sucrose, 10 mM glucose, and 0.01 M Hepes; treated to pH 7.4) in
the presence of the cell–permeant calcium sensitive dye Fluo-4-AM (4 µl Fluo-4
per ml of EM). The culture was washed with fresh EM after incubation and finally
placed in a recording chamber containing 4 ml of EM.

The recording chamber sit on a temperature controller stage that provided stable
temperature during recording with an error of 0.1◦C. The stage was mounted on a
Zeiss inverted microscope equipped with a 2.5X objective and a variable optical
zoom in the range 0.32X-0.81X. Neuronal activity was monitored through fluo-
rescence calcium imaging (Figure 2.B.1d)) using a Hamamatsu Orca Flash 2.8
CMOS camera attached to the microscope. Images were acquired with a speed in
the range 33.33−200 frames per second (fps) and a spatial resolution in the range
3.44−8.51 µm/pixel (depending on the optical zoom and camera settings). As de-
scribed later, the recording speed was adjusted in each experiment to balance image
quality, minimum photo–damage to the cells, and sufficient temporal resolution.
The size of the images was automatically set by the camera to fit the requested
acquisition speed. The maximum image size that we could set was 960×720 pixels
(width×height), i.e. 8.2×6.1 mm2 at the lowest resolution and acquisition speed
(33.33 fps). At 200 fps, for instance, the maximum image size was 960×144 pixels,
corresponding to 8.2×1.2 mm2. The number of neurons monitored depended on
the actual size of the mini–culture and the recording settings, but all experiments
contained at least 1000 neurons.

2.B.3 Experimental procedure

Prior to recording, the mini–cultures were carefully inspected to reject those with
dead cells or poor distribution of neurons. The selected culture was next placed in
the recording chamber and oriented respect to the camera to fit as many cultures as
possible in the field of view, as illustrated in Figure 2.B.1b.

In all experiments the spontaneous activity of the neuronal network was monitored
at a temperature of 25 ◦C unless stated otherwise. Experiments were carried out in
two steps. In the first step a short image sequence at 100 fps was recorded for about
5 min, containing a few bursts. The data was then pre–analyzed to determine the
typical propagation speed of the front. The camera settings were then readjusted
to set the maximum image size and recording quality according to this speed. In
the experiments it was observed that a front propagating at v ' 10 mm/s (see
Figure 2.16) could be well resolved at speeds of 33.33−50 fps, while propagations
at v' 100 mm/s (typically for cultures at DIV 14-27) required an acquisition speed
of 200 fps.

The second step corresponded to the actual recording of spontaneous activity. A
long sequence of typically 45 min in duration was acquired, which contained
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several network bursts, on the order of 100. A second recording of 45− 60 min
long was also programmed for those experiments in which the neuronal network
was manipulated, e.g. to study inhibition or different temperatures. Cultures under
continuous recording are healthy for about 2−3 h, and therefore we limited the
experiments to 1.5 h to prevent artifacts in the data due to culture deterioration.

We designed the experiments to explore different culture sizes, the excitatory–
inhibitory balance, temperature, as well as the influence of physical damage to the
network. The experiments are summarized in Table 2.B.1.

As indicated, experiments carried out at day in vitro (DIV) 9− 18 showed rich
and sustained spontaneous activity. This activity took the form of bursts. However,
for completeness, we also tested (Table 2.B.1)): a) very young cultures at DIV
5− 6, which lack inhibition but do fire [Soriano 2008]; b) maturing cultures at
DIV 7− 8, characterized by a low activity and low propagating velocity; and c)
relatively old cultures at DIV 20−27, which are highly active but that may exhibit
a more complex bursting dynamics [Wagenaar 2006a]. Data averaging was carried
out only with cultures that differed a maximum of 2 days for DIV< 9, or 3 days for
DIV≥ 9. Although nucleation and front propagation could be observed in all cases,
the dynamics of the front depended on culture age, culture size, and the balance
between excitation and inhibition.

2.B.4 Pharmacology

Sufficiently mature neuronal cultures (above DIV 6−7) contain both excitatory
and inhibitory neurons. To study the influence of the inhibitory sub–network in the
initiation and propagation of the activity front, data was first recorded with both
excitatory and inhibitory connections active (E+I networks). Next, the culture was
treated with 40 µM bicuculline methiodide (Sigma), a GABAA receptor antagonist,
to completely block inhibition, and the activity of the excitatory–only culture (E
network) was measured again. Bicuculline was applied to the culture 5min before
the actual recording of activity for the drug to take effect.

2.B.5 Data analysis

The recorded image sequences were processed at the end of the experiment to
retrieve the fluorescence intensity of 1000−3000 individual neurons as a function
of time. To reconstruct the neurons’ ignition sequence, a particular bursting event
was isolated from the rest of the sequence. Next, for the fluorescence signal of each
neuron, two linear fits were carried out: one fit of the data points preceding the
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Table 2.B.1 Summary of the experiments. ’DIV’ is culture days in vitro. Cultures were always
grown on cover glasses, and the presence of PDMS pierced molds during culture development
provided mini–cultures of either circular or rectangular shapes. ’Type’ indicates then the nominal
size and shape of the circular or rectangular PDMS pierced molds. For those experiments without
PDMS, the diameter of the cover glass is provided instead. ’Area’ is the actual region covered
by the neurons in the mini–culture, measured at the end of the experiment. The ’standard experi-
ments’ correspond to measures with excitation and inhibition active (E+I networks), followed by
measurements in the same culture with inhibition blocked upon application of 40 µM bicuculline
(E networks). Some special experiments were inspired by the theory, and included the removal
of a part of the network (cutting experiments) and the exploration of different temperatures. The
number in brackets beside the measurements of inter–burst interval (IBI) and average velocity of
the propagating front < v > is the standard deviation of the data. IBIs and standard deviations are
not computed for those experiments with 5 or less bursts.

Culture properties Realizations 
(N) 

Experimental 
condition 

Recording 
time  
(min) 

Observed 
bursts 

(n) 

Dynamics  
Comments Type Area  

(mm2) 
DIV <IBI>  

(s) 
< V > 

(mm/s) 
Circ, 2 mm 3.0 10 2 E+I 45 38 83 (96) 3 (1)  

Standard experiments on 
pierced PDMS molds 

[small size] 

E 45 14 173 (122) 6 (1) 
Circ, 2 mm 2.0 9 2 E+I 30 45 47 (64) 3 (1) 

E 60 9 360 (208) 6 (1) 
          

Circ, 3 mm 7.1 5 2 E+I  30 29 62 (23) 3 (1)  
Standard experiments on 

pierced PDMS molds 
[medium size] 

E 45 (no activity) - - 
Circ, 3 mm 7.1 6 2 E+I  40 45 51 (32) 10 (3) 

E 45 3 (erratic) - 3 (2) 
Circ, 3 mm 7.1 8 2 E+I 25 111 13 (7) 6 (2) 

E 45 3 (erratic) - 9 (2) 
Circ, 3 mm 7.1 9 1 E+I 25 52 23 (11) 13 (2) 

E 45 3 (erratic) - 28 (4) 
Circ, 3 mm 6.9 9 5 E+I 45 98 26 (19) 8 (2) 

E 60 44 78 (114) 16 (3) 
Circ, 3 mm 5.6 10 1 E+I 30 58 30 (23) 16 (5) 

E 45 5 (erratic) - 28 (3) 
Circ, 3 mm 5.2 10 1 E+I 45 101 26 (16) 11 (2) 

E 45 7 (erratic) 270 (72) 24 (3) 
Circ, 3 mm 6.2 10 4 E+I 45 63 44 (46) 20 (5) 

E 60 21 156 (81) 28 (7) 
Circ, 4 mm 7.4 11 2 E+I 40 68 35 (10) 5 (1) 

E 60 44 83 (64) 9 (1) 
Circ, 3 mm 8.1 13 2 E+I 40 49 48 (47) 13 (3) 

E 60 13 265 (172) 21 (5) 
          

Circ, 3 mm 6.9 12 2 E+I normal 35 24 75 (46) 13 (2)  
Cutting experiments E+I after cut 35 58 37 (24) 10 (2) 

Circ, 3 mm 7.3 12 2 E+I normal 35 56 31 (24) 12 (3) 
E+I after cut 45 60 43 (43) 11 (2) 

          

Rect, 6x3 
mm2 

15.8 9 1 E+I  40 134 17 (8) 16 (3)  
Standard experiments on 

pierced PDMS molds 
[big size] 

E 60 60 53 (36) 18 (3) 
Rect, 6x4 
mm2 

16.8 9 2 E+I  40 157 15 (8) 12 (2) 
E 60 42 79 (62) 16 (2) 

Rect, 7x3 mm 16.9 11 3 E+I 40 148 16 (8) 6 (2) 
E 60 92 39 (24) 9 (2) 

Rect, 6x3 
mm2 

13.8 15 2 E+I 35 34 56 (33) 18 (4) 
E 55 28 117 (108) 26 (4) 

          

Rect, 5x3 
mm2 

7.3 16 – 
18 

6 E+I  [25 ºC] 40 43 96 (32) 13 (3)  
Temperature experiments E+I  [37 ºC] 40 34 108 (41) 14 (2) 

E  [25 ºC] 40 17 165 (29)  20 (6) 
E  [37 ºC] 40 16 180 (43) 22 (7) 

1 E  [49 ºC] 40 2 - 33 (10) 
          

13 mm glass 132.7 5 2 E+I  30 38 47 (25) 19 (6)  
 

Standard experiments on 
13 mm cover glasses 

E 60 (no activity) - - 
13 mm glass 132.7 6 2 E+I  25 81 18 (9) 13 (3) 

E 45 14 (erratic) 185 (114) 11 (3) 
13 mm glass 132.7 9 3 E+I  20 96 11 (10) 6 (1) 

E 20 14 13 (9) 26 (3) 
13 mm glass 132.7 12 3 E+I  30 92 19 (23) 13 (2) 

E 45 19 144 (102) 23 (4) 
13 mm glass 132.7 13 3 E+I  25 64 24 (15) 15 (2) 

E 45 62 44 (37) 51 (5) 
13 mm glass 132.7 14 3 E+I  30 179 10 (3) 9 (3) 

E 60 122 29 (19) 13 (2) 
13 mm glass 132.7 15 2 E+I  35 219 9 (4) 17 (3) 

E 50 91 33 (8) 34 (6) 
13 mm glass 132.7 16 2 E+I  40 72 33 (21) 18 (3) 

E 45 35 79 (29) 26 (3) 
13 mm glass 
 

132.7 
 

27 
 

2 
 

E+I  35 264  8 (6) 26 (5) 
E 55 169 19 (6) 43 (6) 

13 mm glass 132.7 20 2 E only 30 51 36 (29) 63 (5) 
13 mm glass 132.7 21 2 E only 30 54 32 (13) 89 (8) 
          

13 mm glass 132.7 8 2 E+I (before 
cut) 

20 56 21 (10) 23 (5) Cutting experiment 

E+I (after cut) 20 18 (erratic) 62 (41) 22 (7) 
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firing and another one of the points encompassing the fast increase in fluorescence
(Figure 2.B.2)). The crossing point of the two lines provided the ignition time of the
neuron. This process was repeated for all neurons, and the final activation times data
set was ordered to reconstruct the neurons’ firing sequence (Figure 2.B.2)). This
information, together with the spatial position of the neurons, provided the map of
neuronal activation shown in Figure 2.16 (see also Figure 2.19). The first group of
neurons to fire determined the position of the nucleation point, i.e., the center of
burst initiation. Since the burst propagates as a circular wave, the velocity of the
front was calculated as the average radial displacement at different time intervals.
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Figure 2.B.2 Determination of the onset time. Top: Example of the fluorescence signal of an
individual neuron, together with the linear fits used to determine the onset time of firing. Bottom:
Fluorescence traces of three neurons located (from top to bottom) at the left edge, center, and right
edge of the region studied. The thick line connects the measured onset times, and illustrates the
propagation of an activity front from right to left.

The reconstruction of the neurons’ ignition sequence was slightly sensitive to the
signal–to–noise ratio, i.e. fluorescence signal quality, and on the parameters of the
linear fits, i.e. the fitting origin and range. The determination of the coordinates
of the nucleation point and their associated error took into account the fact that
activity propagates as a circular wave, and proceeded as follows. For each activity
front, the average position of initiation for the first N firing neurons was calculated
with N = 1,2,3,5 and 10, considering the standard deviation of these positions
as the error εxy in the location of the nucleation site. This initial calculation was
carried out using preset fitting parameters, which were later refined to take those that
minimized εxy. The propagation velocity of the front is measured along consecutive
radius, centered at the nucleation site and separated by 200 µm.
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Each spontaneous activity measurement provided a set of about 50−200 nucleation
points and associated errors. The number of bursts depended on culture properties,
e.g., maturation or size, and network connectivity, e.g. inhibition active or blocked.
The corresponding nucleation probability distribution of these nucleation points
was calculated as follows. First, the area of the neuronal culture was coarse–grained
by applying a grid with a lateral size s = 10 µm. This grid was next associated
to a matrix initiated with zeros. For each nucleation point, one was added to the
matrix element with indexes (i, j) that corresponded to the coordinates (x,y) of
the nucleation point. The matrix elements at concentric radius from the nucleation
point, and up to the error εxy, were added with radially decreasing values according
to a Gaussian distribution. In this way the spatial distribution of nucleation sites
could be weighted by their errors. The matrix was finally normalized and divided
by the coarse–graining factor s2 (in mm−2) to obtain the probability density plotted
in the manuscript. A comparison of the distribution of burst initiation points and
the final nucleation probability function is shown in Figure 2.B.3.
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Figure 2.B.3 Experimental determination of nucleation points and sites. Nucleation proba-
bility function for the experiment shown in Figure 2.18 together with the corresponding burst
initiation points (black dots). Nucleation probability is obtained by coarse–graining the 134
nucleation points with an algorithm that includes the error in their detection. The data shown
corresponds to a measurement with both excitation and inhibition active, and at DIV 9.

Lorenz curves show the cumulated probability of nucleation as a function of their
covered area in the culture. Lorenz curves therefore provide a visual aid for the
observed small area coverage of nucleation sites. Homogeneously distributed nu-
cleation sites across the culture would result in a straight line along the diagonal
of the plots shown in Figure 2.16c since each area unit of the culture would con-
tribute equally to nucleation. Hence, deviations from this line mark the tendency
for nucleation to occur in a relatively small area of the culture, as observed both in
experiments and simulations.
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The Lorenz curves shown in Figure 2.16c were obtained from the probability density
of nucleation sites, as follows. The normalized, cross–grained matrix of nucleation
sites was computed, and its values pi ordered in a descending order. Next, the
cumulated sum ∑

n
i pi was plotted as a function of i/n, with n the total number of

elements in the matrix.
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3
Neuronal dynamics in single–motif

periodic networks

The avalanche dynamics described in Section 2.4, and the noise amplification
mechanisms from Section 2.5 that lead to the noise focusing effect, were presented
in the context of metric networks, that inherit their properties from experimental data.
In the description so far, neurons were dynamically identical, but not topologically.
The slight local differences on the detailed wiring of the network resulting in
highly inhomogeneous patterns of activity. To gain further insight into the interplay
between dynamics and topology we will now study case in which the neurons
are also topologically all identical. This will allow new insights on the effects of
different network motifs in the collective activity of the network.

3.1 Generation of single–motif periodic networks

We construct a set of regular networks with N neurons, labeled M(F,B); where F
and B are the number of forward and backward connections per neuron respectively.
Each neuron is assigned a circular index (imagine that the neurons are positioned in
a ring), and each neuron creates an output connection with the next F (clockwise)
neurons and the previous B (counterclockwise) neurons. Within this description,
the vector Kout

i describing the output connections of neuron i (which correspond to
the i-th row of the adjacency matrix A) is described by
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Kout
i =

(
0, . . . ,0,

B︷ ︸︸ ︷
1, . . . ,1,0︸ ︷︷ ︸
i

,

F︷ ︸︸ ︷
1, . . . ,1,0, . . . ,0

)
, (3.1)

and it is straightforward to see that the input connectivity vector Kin
i is

Kin
i =

(
0, . . . ,0,

F︷ ︸︸ ︷
1, . . . ,1,0︸ ︷︷ ︸
i

,

B︷ ︸︸ ︷
1, . . . ,1,0, . . . ,0

)
. (3.2)

If we change F and B while keeping k = F +B constant, we can study the effect
of different levels of clustering and triangle types for the same connectivity. It is
easy to see that the full forward network M(k,0) only contains feed–forward (TFF )
triangles1, while the network M(k/2,k/2) has the maximum number of feed–back
(TFB), feed-forward and total number of triangles TTOTAL. Also note that M(F,B) is
the mirror image of M(B,F), so we will restrict our analysis to F > B without loss
of generality.

Characteristic examples of the generated networks are shown in Figure 3.1a for
N = 13 and k = 4, where the neurons are positioned in the unit circle and the forward
connections correspond to the clockwise direction and backward connections to
the counterclockwise one. The network labeled M0 = (4,0) only presents feedback
triangles, whereas the network M3 = (2,2) has the maximum number of feedback
and feedforward triangles. The network labeled M1−M2 correspond to cases in-
between. The network MR on the other hand, corresponds to a random graph with
the same connectivity. MR has the minimum possible triangles, TTOTAL → 0 as
N→ ∞.

3.2 Avalanches and bursting activity

We simulated the dynamics described in Section 2.1 with the same parameters for
regular networks with N = 200 and k = 35 for five different networks: M0 = (35,0),
M1 = (30,5), M2 = (25,10), M3 = (18,17) and MR being a random graph with
fixed k = 35. For all the networks we observe the bursting behavior and the presence
of both background (BA) and ignition (IA) avalanches, as in the metric networks.
Figure 3.1b shows the distribution of BAs for all the studied networks. The BAs
distributions for all the regular networks have a similar trend with a reasonable data
collapse, although the distribution starts to deviate at large avalanches due to the
small size of the system. These networks however, do not posses nucleation sites,
or more accurately, the distribution of nucleation sites is homogeneous, since all
points in the system are equivalent.

1 As long as N > 2k.
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Figure 3.1 Statistics of Background Avalanches for regular, non-metric networks. a, Four
examples of regular networks, with four connections per neuron (the motif in dark color is repeated
for all 13 neurons). M0 designates the case with fully asymmetric (one-sided) connections, while
M3 designates the fully symmetric arrangement. The case depicted as M1−M2 describes a generic
intermediate case with a non-symmetric arrangement. These network configurations provide
scenarios with a different balance between FF and FB triangular loops, with only FFs in M0 and
the maximum number of FBs in M3, and while keeping the number of input and output connections
constant. Finally, MR designates a random case with the same number of connections per neuron.
b, Avalanche frequency as a function of the avalanche size for regular networks of 200 neurons,
35 connections per neuron, and different motif arrangements, including: asymmetric M0 = (35,0),
two intermediate cases M1 = (30,5) and M2 = (25,10), symmetric M3 = (18,17), and random
MR. The values in brackets denote the number of clockwise connections and counterclockwise
connections. The dashed horizontal lines correspond to the frequency of IA for the four regular
networks (values indistinguishable in this scale) and the random one. The dashed line marks
the crossover scale for departure from the power law behavior, with approximate slope −5/2. c,
Nucleation frequency for the different regular and random networks, showing a non-monotonic
behavior. d, Statistics of FFs, FBs and total number of triangles for the different networks.

The interburst interval (IBI) frequency is highly sensitive to the wiring of the
network. This sensitivity becomes clear in Figure 3.1c, where we show the IBI
frequency of the four regular networks and the random one. We note that the
nucleation time (the inverse of the IBI frequency) for the random network is two
orders of magnitude higher than the regular ones. Such a difference is associated to
the weaker correlations between neurons in the random network. For the regular
cases, however, the difference is associated to the balance between FF and FB
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triangles. Indeed, although a larger number of FF triangles initially favors nucleation,
the shortest nucleation times are obtained when a finite amount of recurrence (FB
triangles) is introduced. For these particular networks, the optimal ratio of FF
triangles to the total number of triangles is RFF ' 0.85. As a reference we note that
for an infinite random graph RFF = 0.75. It is suggestive that the simulated metric
networks presented in Section 2.1.4 yield values close to the above optimum value,
with RFF = 0.87.

These results indicate that the general structure of avalanches followed by nucleation
is a robust scenario and, more importantly, that random graphs would need a much
larger time to nucleate once the network has recovered from synaptic depression.
This indicates that the metric correlations in the connectivity generated by the
growth process of axons leads to much faster nucleation. On the other hand, we
can see that the detailed wiring at the level of triangles can introduce significant
differences in the characteristic time scale of nucleation. This sensitivity of the
nucleation times to the detailed wiring explains why regions of similar average
connectivity in the metric networks show significant differences in nucleation
probability, as we have seen in Section 2.2.2.

3.3 Multi–layer networks

The regular networks described above are particularly insightful to describe the
statistics of avalanches and the relevance of different types of triangles in the
collective dynamics. These networks however, can only be used for small N due to
their scaling properties. In the realistic networks, the average path length lG, that
defines the number of jumps needed to travel from one side of the network to the
other, is dominated by the axon length ` and the system size L. For the networks
used in Chapter 2 we have 〈`〉 ∼1.1 mm and L∼5 mm, resulting in lG ∼ L/〈`〉 ∼ 5.
For the M regular networks however, we have in general lG = N/k. If we go to large
networks N > 103, for the typical connectivity 35− 70, the path length quickly
becomes very large. The path length is an important characteristic of non–metric
networks, since it allows to establish a distance between nodes in the absence of a
metric space. In these networks we can define a propagation velocity by the time
it takes for a burst to propagate through the entire system, which is proportional
to lG. Although the system is periodic, propagation stops when the wave reaches
the original nucleation region because the system is still depressed. For large lG
however, the system enters a periodic regime if it is allowed to recover before the
wave can travel the whole system.

This shortcoming can be avoided by using instead multi–layer networks, which
are the direct generalization of the previous regular networks. These networks are
described by two global parameters, the number of layers L and the neurons per
layer NL, where N = LNL is the total number of neurons. The connectivity pattern
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is described by a single vector K of length L that describes the connections a layer
makes with the other layers in the same way we did in Equations (3.1) and (3.2). The
way in which each neuron connects with the neurons in the other layers also needs to
be established, but for simplicity we only consider cases where if a neuron connects
to a layer, it connects to all the neurons within that layer. Within this description
we can also describe the connectivity pattern between layers by ML(F,B), and the
total connectivity of a neuron is (F +B)NL = k. A schematic representation of a
multi–layer network is shown in Figure 3.2. Variant of these types of networks are
often used in neuroscience, like feed-forward networks [Kumar 2010] and synfire
chains [Ikegaya 2004, Long 2010], often used to describe coding and information
transfer.

i

i-1

i+1

i+2

i+1 i+2ii-1

ML(2,1)

NL=3}

Figure 3.2 Multi–layer networks structure. Left: ring representation of a multi–layer network.
Each of the eight segments represents a layer with NL neurons, and the arrows represent the
connections between layers. For this particular case each layer connects with the next two layers
(arrows inside the circle) and with the previous layer (arrows outside the circle), i.e., ML = (2,1).
Connections are not allowed within the same layer. Right: the connectivity pattern for the neurons
in layer i for the particular case NL = 3.

It is also easy to see from Figure 3.2 that when a layer only contains a single neuron
NL = 1, the multi–layer network is equivalent to the ones described in Section 3.1.

3.4 Statistics and structure of avalanches

We perform a systematic study of many avalanche observables for networks with the
same global connectivity k (see Figure 3.3). All the observables shown in Figure 3.3
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appear to be independent of the connectivity pattern, from fully feed-forward
networks F = 50 to undirected networks2 F = 25.
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Figure 3.3 Avalanche statistics in single–layer networks. a, PDF of avalanche sizes in single–
layer networks with the characteristic power–law behavior for small avalanches. b, Relation
between the temporal dispersion and the duration of the avalanches. The temporal dispersion is the
standard deviation of spike times within an avalanche. c, Relationship between avalanche duration
and size which becomes almost linear for large avalanches. The legend indicates the number of
forward connections F for each network with k = 50 and L = 250. Shaded area indicates the
standard deviation of each observable. The three observables shown here are invariant to the
connectivity pattern.

The only observable that appears to depend on the connectivity pattern is the
avalanche radius. The avalanche radius is defined as the standard deviation of
the positions of spiking neurons within an avalanche (the position of the neuron
is defined by its layer), and defining the unit distance by the distance between
consecutive layers. The characteristic radius for different networks in single–layer
and multi–layer configurations are shown in Figure 3.4. The avalanche radius
increases rapidly with avalanche size, but it saturates for large avalanches.

From the characterization of the avalanches presented in Figures 3.3 and 3.4 a
clear picture emerges. Although the statistics of avalanche sizes and lengths remain
almost invariant for the different connectivity patterns, the avalanche radius (spatial
spreading) indeed does change. This behavior is not directly related to the clustering
or triangles, since the networks with F = B have the highest number of triangles
(for every motif); or to the path length, since it is the same for all the networks.
It is related to how the avalanche can spread to newer areas. Although a network
with maximum F does not have the highest number of feed–forward triangles, all
these triangles are effectively spreading the activity away from where it started. In
a network with lower F (same k) however, activity travels back and forth, and its
spread is smaller.

2 We use the term undirected to denote that there is no preferred direction in the network. Activity
spreads equally through the network due to the symmetry between forward and backward layers.
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Figure 3.4 Avalanche radius in multi–layer networks. a, Dependence of the avalanche radius
with avalanche size for NL = 1 networks with different connectivity patterns. b, Same representa-
tion for multi-layer avalanches with NL = 5. The legend indicates the number of forward layers F
a given layer connects to. For each network with k = 50 and L = 250. Shaded area indicates the
standard deviation of the observable.

Another characteristic of the avalanches that depends on the specific topology
is the average displacement of activity within an avalanche. A moving–window
average in time of the positions of the spiking neurons within an avalanche creates a
smooth trajectory in space. The end points of the trajectory define the displacement
within an avalanche, and also using its duration we can define an average avalanche
velocity

〈V (s)〉=
〈

D(s)
T (s)

〉
, (3.3)

where D(s) and T (s) are the displacement and duration of a given avalanche of
size s. The distribution of avalanche sizes for the different networks are shown in
Figure 3.5. For NL = 1 (see Figure 3.5a) the distribution shows a non–monotonic
behavior for small avalanches, but the velocity of large avalanches quickly stabilizes
and appears to be independent of avalanche size. Note that the non–monotonic
behavior is not present for NL = 5 (see Figure 3.5b).

Averaging over the distribution of avalanche sizes, results in a well defined velocity

〈V 〉=
∞∫

0

〈V (s)〉p(s)ds, (3.4)

where p(s) is the probability density function of avalanche sizes. The resulting
average avalanche velocity quantifies the effect of the network topology on the
spreading of the avalanches, and is shown in Figure 3.6. The average avalanche
velocity for the symmetric network F = B is 0, and it increases with the asymmetry.
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Figure 3.5 Avalanche velocity. a, Distribution of avalanche velocities for NL = 1. b, Distribution
of avalanche velocities for NL = 5.

The average velocity establishes a clear connection between the spreading of the
avalanches in the network and its topology.
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Figure 3.6 Average avalanche velocity. a, Average avalanche velocities for NL = 1. b, Average
avalanche velocities for NL = 5.

3.5 Conclusions

The implementation of the neuronal dynamics in regular networks allows us to fur-
ther identify and quantify the effects of the different network motifs in the avalanche
and bursting behavior. The noise amplification mechanism introduced in Section 2.5
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is also present in these networks, however, the key ingredient of noise focusing,
i.e., the existence of different amplification paths created by inhomogeneities in
the network, is not present in regular networks. Since all neurons have the same
connectivity, activity flows equally through the network.

Regular networks however, are useful to quantify the effects of topology on the
dynamics. The avalanches show the same scaling relations and behavior than those
found in metric networks, and although there are no specific, permanent nucleation
sites, waves do nucleate homogeneously and propagate. The close relationship
between the bursting rate and the topology (shown in Figures 3.1c and 3.1d)
further explains why no single observable can be used to identify nucleation sites.
The interplay between network and dynamics is such, that it will be extremely
difficult for any coarse–grained or mean-field description to accurately capture this
relationship.

The characterization of the avalanches by its radius and velocity, which depend
on the network structure (shown in Figure 3.4 and Figure 3.5), allows us to define
a transport coefficient V that characterizes how activity spreads throughout the
network based on the network motifs. In a non–regular metric network however,
this coefficient will in general depend on the local network structure, and the
propagation will be anisotropic, as we have seen in the activity flow maps from
Section 2.6.2. In general we will be able to define a vector coefficient with spatial
dependence V(x,y).
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4
Neuronal cultures at the mesoscale

The results presented in Chapter 2 suggest that a coarse–grained representation
of the collective dynamics of neuronal cultures could be adequate and possibly
insightful to clarify the nature of the collective phenomena involved. Many of the
interesting results from the analysis of spontaneous activity in neuronal cultures are
only appreciated after an appropriate coarse–graining of the network observables
and the network activity. A description at the level of population activity, that takes
into account the spatio–temporal structure of the microscopic dynamics, should be
possible, and given the features of the metric networks, a description in terms of a
continuous, spatially–extended system emerges naturally. Within this description,
the system is characterized by a set of continuous variables in space, the network is
replaced by spatial couplings, and the microscopic dynamics are characterized by
effective transport coefficients [García-Ojalvo 1999, Sagués 2007]. The distinctive
feature of the mesoscale level of description is that the microscopic degrees of
freedom are incorporated through stochastic noise terms. The challenge is thus
to elucidate the way to include the phenomenon of noise focusing in this type of
description.

As we have seen in Chapter 2, the population dynamics of neuronal cultures is
governed by collective bursts of activity, whose internal structure is that of traveling
fronts that nucleate at specific sites of the system and propagate. When it comes
to the analysis of activity propagation, the system behaves as a regular excitable
system [Lindner 2004], where the network plays little role and the propagation is
governed by spiking dynamics. The description of the nucleation process, however,
is not so simple to implement as we will now see.
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4.1 A coarse–grained model for noise focusing

The propagation dynamics observed in the spontaneous activity of neuronal cultures
can be described with almost any reaction-diffusion model [Sagués 2007], like the
Oregonator model [Tyson 1980, Field 1972, Sendiña-Nadal 2000] or the Barkley
model [Barkley 1991]. The full macroscopic dynamics, however, are those of an
excitable system, which can be understood as an extension of the above by the
inclusion of a feedback mechanism [Lindner 2004]. Our model of neuronal cultures
at the mesoscale starts with the most general version of the FitzHugh–Nagumo (FN)
model [Nagumo 1962, Fitzhugh 1961], due to its historical use in neuroscience.
The original spatially–extended FN model is described by

u̇ = f (u)−κv+D∆u+η , (4.1a)
v̇ =γ(u+g−hv), (4.1b)

where f (u) = au3 +bu2 +cu+d. In the original FN model the variable u describes
the behavior of a neuron membrane potential and v is a recovery variable that
provides a negative feedback to account for the effect of slow currents. The original
FN was used to describe the propagation of an action potential through an axon via a
diffusive coupling D∆u. In our case however, the variable u describe the population
activity, a coarse–grained version of the single neuron activity. The population
activity can also propagate, and is mediated by the same kind of diffusive coupling.

By an appropriate choice of the parameters a,b,c,d,κ,γ,g and h (see Table 4.1), we
effectively constrain the possible trajectories of our system to the region u ∈ (0,1)
and v ∈ (0,1); we associate u ∼ 0 to the background activity and u ∼ 1, to the
bursting behavior1.

Within this parameter range, the system has a single fixed point (see Figure 4.1). The
fixed point is stable, but very close to a supercritical Andronov-Hopf bifurcation
[Izhikevich 2007], and the presence of a noise term η , allows the system to lose
stability and generate large amplitude excursions around a limit cycle attractor. In
the two–dimensional system, these excursions can start at any point in the system
and propagate by means of the diffusive coupling, giving rise to a traveling front.

The dynamical behavior of this model reproduces the generation and propagation
of traveling fronts that are equivalent to the bursts of neuronal cultures, but the
mechanisms involved in front termination, however, differ substantially. In the FN
model front termination is controlled by the variable v, that plays a role similar to the
slow currents and the after–spike hyper–polarization of the membrane. In neuronal
cultures, however, synaptic depression plays a key role in wave termination and
regulates the periodicity of the fronts. In the neuron model from Chapter 2, synaptic
depression is described by Equation (2.6), and the response of this equation to an

1 Formally this corresponds to a logarithmic mapping between the population activity rate and the
variable u.
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Figure 4.1 Phase–portrait
of the zero–dimensional FN
model. Phase–portrait and null-
clines for the zero–dimensional
FN model in our parameter
range. The black line shows the
trajectory of an initial perturba-
tion at t0 that excites the system. 0 0.2 0.4 0.6 0.8 1
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input of varying frequency is shown in Figure 4.2, where w accounts for the level
of depression of the synapses. The level of depression w is close to 0 for low values
of activity whereas it quickly reaches saturation for high activity values.
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Figure 4.2 Depression response for a Poisson spike train. a, Steady–state value of the depres-
sion of a synapse w = 1−D, governed by Equation (2.6), for a Poisson spike train. b, Same plot
in logarithmic scale.

Based on these results, we propose to introduce synaptic depression in the FN
model by means of the following equation

ẇ =− 1
τD

w+βun(1−w), (4.2)

where w is the level of depression, τD the time scale of synaptic recovery, and β

and n parameters fitted to obtain a curve like the one presented in Figure 4.2b. Note
that the steady–state solution of Equation (4.2) is
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wst =
un

(βτD)−1 +un , (4.3)

which has the form of a Hill equation, often used to describe cooperative binding
dynamics between ligands and their receptors in biochemistry.

The coupling between synaptic depression and the original activity equation has to
be introduced with care. Synaptic depression must be able to completely eliminate
the spatial coupling, thus preventing activity from spreading, but should not affect
the internal dynamics of the system. While the system is recovering from a burst, it is
not able to generate a new one, however, it is possible to excite the system externally,
and this has to be taken into account. To complete the model, we also include two
new transport coefficients that will effectively incorporate the specific features of
the noise within an underlying network of excitable elements. Specifically, we will
introduce a scalar parameter α that describes the amplification of the noise, and a
vector parameter V that accounts for the directional transport of the noise activity
through the network. These are both space dependent fields and will be discussed
later in this chapter. The final version of the model reads

u̇ = f (u)−κv+(1−w)
(

D∆u−∇ · (uV)+αu
)
+η , (4.4a)

v̇ =γ(u+g−hv), (4.4b)

ẇ =− 1
τD

w+βun(1−w), (4.4c)

where f (u) = au3 +bu2 + cu+d and η is a white noise term. The phase–portrait
for the 0D–version of this model is shown in Figure 4.3. The depression from
Equation (4.2) is coupled to the activity in Equation (4.4a), but only interacts with
the spatial coupling and the new transport coefficients.

The term αu in eq. (4.4a), introduces a local mechanism of activity amplification,
representing the effect of network loops within a small area, whose interaction
amplifies incoming activity. Although an heterogeneous amplification α(x,y) is
also possible, we consider it to be a constant for simplicity. Given that this term
accounts for local mechanisms of activity amplification, it has to be coupled to the
synaptic depression, since no amplification can take place when the system is fully
depressed.

In the zero–dimensional version of the model (see Figure 4.3), the system has a
single stable fixed point pst = (ust ,vst ,wst). The nullclines of the model correspond
to two–dimensional surfaces, but it is useful to analyze their projections around
specific values. One of them corresponds to w = 1 (fully depressed system); when
the system is fully depressed, the temporal evolution of w(t) is governed by τD,
which defines a characteristic time scale, orders of magnitude higher than any other
scale in the system. Hence u and v can be adiabatically eliminated and substituted
with a constant value wa for the following analysis. For any w the system has a
single stable fixed point pa = (ua,va,w), where
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Figure 4.3 Model phase–portrait and nullclines. Set of nullclines for the full extended model
in a 0D–spatial system. The trajectory of a small perturbation at t0 is also shown (black line).
The list of parameter values is shown in Table 4.1. a, Projection of the nullclines in the (u,v)
coordinates. The system has a single fixed point (black circle), and the nullcline for u̇ = 0 is plotted
at the stationary value of w = wst (red line) and also at w = 1 (yellow line). The nullcline for
ẇ = 0 (not shown) corresponds to a horizontal line crossing the fixed point, since it is indendent
of v. b, Projection of the nullclines in (u,w) coordinates. The u̇ = 0 nullcline is plotted at v = vst .

f (ua)+ua

(
α(1−wa)−

κ

h

)
+κg = 0, (4.5a)

va =
1
h
(ua +g), (4.5b)

where ua is obtained by solving Equation (4.5a), which is a cubic polynomial.
The evolution of the system after depression corresponds to the evolution of the
fixed point (ua,va,wa) with time, and during this recovery phase we can further
approximate the evolution of wa(t) by

wa(t) ∝ exp−t/τD, (4.6)

since the second term in Equation (4.4c) can de discarded.

This analysis is graphically shown in Figure 4.3a, where we plot the u̇ = 0 nullcline
for w = 1 and wst . Given that v̇ does not depend on w, the evolution of the system
is determined by the intersection of v̇ = 0, and the nullcline for u̇ = 0 that is slowly
evolving in time from the yellow curve to the red one, as shown by the black
trajectory. During recovery the system is slowly evolving from pa, which is stable,
towards pst , which is also stable but it is close to the bifurcation point, where a
perturbation can easily drive it towards a limit cycle.
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Going back to the analysis of the amplification factor αu, the nullcline of u̇ for a
given wa can be expressed as v = F (u,wa). We have that F (u,0) = F (u,1)+αu,
so in the 0D system term αu is controlling the evolution of the fixed point during
recovery. In the 2D model however, there are several other terms that affect the
evolution of the system.

In the two–dimensional system, the diffusion term D∆u, is also coupled to the
depression variable, since it accounts for the spreading of activity throughout the
system, specially when u is high, which corresponds to the propagation of a wave
of activity. The remaining part of Equation (4.4a), ∇ · (uV), is an advective term
that describes the effective activity flow due to the underlying network structure
and activity avalanches that we saw in Chapter 2. This term attempts to capture ina
s imple way the phenomenon of noise focusing. The V field is directly related to
the activity flow defined in Section 2.6.2, however, there are many possible ways to
describe this field, which we call the avalanche field.

Table 4.1 Mesoscale parameters.List of parameters used
to simulate noise focusing at the mesoscale

Dynamics Parameters Value
Activity parameters

a =−12.93ms−1

b = 19.05ms−1

c =−7.6ms−1

d = 1.016ms−1

Activity–recovery coupling κ = 1ms−1

Diffusion coefficient D = 0.01mm2/ms
Maximum avalanche velocity Vmax = 0.02mm/ms
Amplification rate α = 0.8ms−1

White noise strength η0 = 3×10−8 ms−1

Avalanche noise strength ε = 5×10−10 mm2/ms
Recovery parameters

γ = 0.3ms−1

g =−0.13
h = 0.43

Depression parameters
Depression recovery constant τD = 500ms
Depression decay constant β = 4ms−1

Cooperativity exponent n = 8
Simulation parameters
Algorithm Forward Euler
Time step ∆ t = 1×10−4 ms
Spatial step ∆x = ∆y = 1×10−4 mm
Typical Run time 1×102 s
Typical system size 10mm2
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4.2 Determination of the avalanche field

The avalanche field V tries to describe, in a coarse–grained description, all the
phenomenology behind the noise focusing mechanism and the activity avalanches.
Based on our previous study of avalanches in regular networks (see Chapter 3),
where we were able to define a characteristic velocity to different network motifs,
we know that although there exists a preferred direction of activity flow, their
distribution is broad and noisy, so in general we separate our avalanche field in two
components

V(r, t) = V0(r)+ξξξ (r, t), (4.7)

where the first term V0 describes an average, constant component of the field,
and ξξξ = (ξ x,ξ y) accounts for the variability in activity propagation, which for
simplicity we model as a Gaussian white noise with autocorrelation

〈ξ i(r, t)ξ j(r′, t ′〉= 2εδ (r− r′)δ (t− t ′)δ i j, (4.8)

where ε denotes its strength. V0, however, has to be modeled taking into account
the neuron dynamics and the network topology, and there are different strategies to
model it.

4.2.1 Connectivity–based avalanche field

A first approximation to the avalanche field consists on generating the field directly
from the connectivity matrix. We associate to each connection Ai j a vector ri j =
r j− ri, where ri is the position of neuron i, and then define the vector field for each
neuron by

VA
i =

N

∑
j=1

Ai jri j = ∑
i∈kout

i

ri j, (4.9)

where the last sum goes over all the kout
i connections. The vector Vi describes the

average direction neuron i forms with its output connections, and its modulus is pro-
portional to the distance and number of connections. The vector is not normalized,
given that neurons with higher output connectivity must be associated to a higher
activity flow. Vi is associated to each neuron, and it still has to be coarse–grained
into a continuum description, with the same procedure we used in Section 2.1.5 to
generate network maps. The streamlines associated to an avalanche field constructed
with this procedure are shown in Figure 4.4a superimposed to the nucleation map
of a particular network. Many streamlines concentrate around the nucleation sites,
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but there are other regions where streamlines concentrate that do not relate to the
nucleation sites.

1mm 0.08

0.30

0.51

0.73 nucleation PD
F (m

m
-2)

a b c

connectivity-based field BA-based field IA-based field

Figure 4.4 Avalanche fields. Streamlines of three different definitions of the avalanche field
for the same circular network, with the nucleation PDF superimposed. a, Streamlines from a
connectivity–based avalanche field V A

i (see Equation (4.9)). b, Streamlines from a BA–based
avalanche field V B

i (see Equation (4.10)). c, Streamlines from an IA–based avalanche field V I
i (see

Equation (4.11)).

4.2.2 BA–based avalanche field

The avalanche field generated above only relies on the connectivity, and is indepen-
dent of the underlying dynamics. A different field can be generated if we also use
the information from the background activity. We can generate a weighted matrix
Bi j from the information obtained by the analysis of the background avalanches
(BAs) in the dynamical system (see Section 2.4.1). Every time a link participates in
a BA its weight is increased by a fixed amount. The full weighted matrix is then
normalized so it describes the probability that a given link participates in a BA. By
using this matrix we can define a new avalanche field as

VB
i =

N

∑
j=1

Bi jri j. (4.10)

This field is very similar to the one constructed with only the connectivity informa-
tion, but it now takes into account the structure of the effective network associated
to the avalanche dynamics (see Section 2.6.1). The streamlines from this field
construction are shown in Figure 4.4b. Comparing the streamlines with the ones
obtained with the previous field we observe only a few differences. The reason
that the fields differ very little is directly related to the avalanche statistics. Most
avalanches are small, and those are isotropic in space, with no preferred directions,
these avalanches are the ones that dominate in the construction of the new field, and
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they do not reveal any particular feature of the system other than the ones already
show by the connectivity structure alone.

4.2.3 IA–based avalanche field

A more refined approach to construct the avalanche field consists in using only the
information from the ignition avalanches (IAs), those that end up in the nucleation
of a burst. For each IA, we assign to the participating neurons a vector pointing
towards the nucleation point of that particular avalanche (see Section 2.6.2),

VI
i = ∑

j∈Ii

(rB
j − ri), (4.11)

where Ii is the subset of IAs where neuron i participates, and rB
j is the nucleation

point of the j–th IA. The streamlines associated to this vector field are shown in
Figure 4.4c. Note that the center of mass of all the spiking activity on an IA must
be very close to the actual ignition point, so the above procedure is equivalent to
defining the vector field as that that unites the origin and the center of mass of the
IA, as we did in Section 2.6.2.

In contrast with the two previous definitions, the IA–based field correlates much
better with the nucleation sites. Most of the streamlines concentrate in the nucleation
sites, and those that do not are regions equidistant to nucleation sites with similar
probability, and no temporal average defined at a single point is ever going to achieve
any better. The IA–based avalanche field is constructed in such a way that it retains
non–local information from the whole region that covers the basin of attraction of
a given nucleation site, which has an extension defined by the mean axon length.
This information is inaccessible to a connectivity–only construction, or from one
that takes into account all avalanches. By using only the IA information, which
corresponds to large avalanches, and also by using the information of the nucleation
point, i.e., where the IA activity ends up concentrating, we are providing each
neuron with information that is not available locally. From now on our avalanche
field will always be constructed from the IA information, i.e., V =VmaxVI . Here we
introduce a global scale factor Vmax that controls the relative weight of the avalanche
field with respect to other terms in Equation (4.4a).

4.2.4 Avalanche field decomposition

To further refine our understanding of the avalanche field, we decompose it into
two different fields through a Helmholtz decomposition, i.e,
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Figure 4.5 Avalanche field decomposition. Streamlines of three different definitions of the
avalanche field for the same circular network, with the nucleation PDF superimposed. a, Full
IA–based avalanche field. b, Irrotational part of the field. It correlates much better with the
nucleation sites than the full field. c, Solenoidal part of the field. The streamlines form loops with
no particular correlation with the nucleation map.

V = I+S (4.12)

where I = −∇φ and S = ∇×A. I is an irrotational field (curl–free) and S is a
solenoidal (divergence–free) one. Applying the divergence operator to both sides of
Equation (4.12) results in the Poisson equation

∆φ =−∇ ·V. (4.13)

which we can solve to obtain φ . When φ is known, I and S are straightforward
to obtain. In Figure 4.5 we show the resulting decomposition for the IA field we
showed in Figure 4.4c. The irrotational field I shown in Figure 4.5b is a very good
predictor of the nucleation sites. Most of the streamlines converge in the nucleation
sites, showing clearly the preferred paths of activity flow. The irrotational field is
similar to the original field, but the removal of the solenoidal part improves the
matching with the nucleation sites. The solenoidal field S, on the other hand, does
not correlate with the nucleation sites. In fact, the average ratio between the two
components

〈
∥∥∥V I
∥∥∥/∥∥∥V S

∥∥∥〉 ≈ 2, (4.14)

shows that the irrotational part plays a much greater role in the whole flow.

Since ∇ ·V = ∇ · I, all the information of the irrotational field is already contained
in the divergence of the whole field. In Figure 4.6 we show the divergence of the
avalanche field −∇ ·V for all the different field definitions from Section 4.2. The
divergence map of the IA–based field is a very good predictor of the nucleation
map, whereas the other two definitions are not. This result indicates that a great part
of the information contained in the complex interplay between the dynamics and
the network topology can be captured within a continuous description, something
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Figure 4.6 Divergence maps. Divergence maps for each of the avalanche field definitions from
Section 4.2. a, Nucleation PDF of the network for reference. b, Divergence map from the IA–based
avalanche field (−∇ ·VI). c, Divergence map from the BA–based avalanche field (−∇ ·VB). d,
Divergence map from the connectivity–based avalanche field (−∇ ·VA). The correlation between
the IA–based avalanche field divergence map and the nucleation sites is clear, where the zones of
maximum (negative) divergence indicate the nucleation sites. The other maps show many regions
of maximum divergence that do not correlate with the nucleation sites.

that was not possible using only the network information or the dynamics at the
single neuron level, as we already showed in Chapter 2.

Although the irrotational part of the avalanche field is the best predictor of the
nucleation sites, the whole vector is necessary to describe the avalanche dynamics
accurately. The full avalanche field VI is the vector field that we will plug into
Equation (4.7) to define the velocity field, i.e.,

V(r, t) = VI(r)+ξξξ (r, t). (4.15)



118 4. Neuronal cultures at the mesoscale

4.3 Simulation details

After obtaining a good description of the avalanche field, we can proceed to integrate
numerically the original model from Equation (4.4), which can now be written as

u̇ =

Deterministic︷ ︸︸ ︷
f (u)−κv+(1−w)

(
D∆u−∇ · (uVI)+αu

) Stochastic︷ ︸︸ ︷
−(1−w)∇ · (uξξξ )+η (4.16a)

v̇ =γ(u+g−hv) (4.16b)

ẇ =− 1
τD

w+βun(1−w), (4.16c)

where we have separated the deterministic and stochastic terms from Equa-
tion (4.16a). This separation is useful for the algorithmic implementation of the
model, however, it is important to remember that the terms VI and α that appear in
the deterministic part also have an stochastic origin. The stochastic part of Equa-
tion (4.16a) has an additive term η and also a multiplicative one uξξξ that is coupled in
space through the ∇ operator, and has to be treated with care [García-Ojalvo 1999].
After the system is discretized in space, the first equation can be expressed as

u̇i j = Fi j +∑
kl

(
gx

i jklξ
x
kl +gy

i jklξ
y
kl +δikδ jlηkl

)
, (4.17)

where the index i corresponds to the discretization on x and j on y. Fi j is the
discretized version of the deterministic part from Equation (4.16a) which is straight-
forward. The second term of the equation runs over all elements k, l, and the gd

i jkl
for d ∈ (x,y) are functions that will depend on the exact implementation of the
discretization of the ∇ operator. If we use central differences for the first and second
derivatives we can finally write

gx
i jkl =− (1−wi j)

1
2∆x

(
ui j
(
δi+1,k−δi−1,k

)
+
(
ui+1, j−ui−1, j

)
δik

)
δ jl , (4.18a)

gy
i jkl =− (1−wi j)

1
2∆y

(
ui j
(
δ j+1,l−δ j−1,l

)
+
(
ui, j+1−ui, j−1

)
δ jl

)
δik, (4.18b)

where ∆x and ∆y are the spatial discretization steps. The discretization of Equa-
tions (4.16b) and (4.16c) is direct, since they are deterministic and not spatially
coupled.

This formulation makes it easy to apply any of the stochastic algorithms for solv-
ing multiplicative Langevin equations, since each of the multiplicative terms can
be treated independently. We chose the Heun algorithm [García-Ojalvo 1999] to
simulate the dynamics of the system in the Stratonovich interpretation.

The implementation of this model is usually computationally more expensive than
simulating the full dynamics, however, it scales much better with system size and
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density. The primary bottleneck is due to the presence of the ∇2 operator, that
imposes heavy restrictions on the choice of ∆ t, ∆x and ∆y in order for the system to
be stable. In our typical system of size 5mm2×5mm2 we usually discretize each
spatial dimension into 64 or 128 bins, which sets an upper bound on ∆ t < 10−3 ms,
whereas for the single neuron simulations ∆ t = 10−1 ms is already good enough.
Also, for densities ρ < 500neurons/mm2 we might be simulating more points in
space than actual neurons. The coupling however in the extended system, however,
is much faster to compute since we only consider interactions between nearest
neighbors in a square lattice, which is much faster than looking at entries in the
adjacency matrix, specially when the connectivity is high k > 102.

Given that most of the temporal evolution of the system is spent on the recovery
phase, i.e., going from w ≈ 1 to w ≈ 0 after a burst, we implement a hack in the
simulation, and during this regime we simulate the evolution of u(t) with the spatial
coupling disabled (D = 0, VI = 0 and ξξξ = 0), and only recover it when w≈ 0. We
have performed extensive comparison and it does not affect the overall dynamics,
whereas it reduces computational time by a factor of 3.

4.4 Nucleation and bursting dynamics

Taking all of this into account we proceed to simulate the full system in two
dimensions with an avalanche field obtained from the neuron dynamics. The single–
point results are summarized in Figure 4.7, where we show the trajectories in
state–space and in time for two different points (solid and dashed lines) in the
system for one cycle (from one burst to the next). In Figures 4.7a to 4.7c we show
the projections of the trajectories in the u,v,w coordinates, where we observe that
both points follow similar trajectories. Most of the cycle excursion in u,v, which
corresponds to the wave propagation, is done in a very short time ∼50 ms, whereas
the remaining part of the cycle, corresponding to the slow recovery from depression,
takes much longer. In this particular case we have set τD =75 ms to speed-up the
simulations, but in the experiments usually τD ≈500 ms to 5000 ms.

In Figures 4.7d and 4.7e we show the trajectories in time of the u and w variables
respectively (the dynamics of v are equivalent to the ones from u but shifted in time).
The evolution of u(t) has the characteristic form of excitable systems, whereas
the evolution of w(t) shows the same behavior as the neuron model of synaptic
depression. In the inset of Figure 4.7d we zoom–in around a burst, where we see
that the two different points do not evolve synchronously, and in fact, the delay is
due to the (expected) presence of a propagating front. The presence of the small
oscillations before a burst is characteristic of the supercritical Andronov-Hopf
bifurcation of the model, and could easily be avoided by a small change in the
feedback mechanism v̇ to obtain a saddle–node bifurcation [Izhikevich 2007].
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Figure 4.7 2D trajectories. Trajectories from the full simulation of Equation (4.16) for two
different spatial points in the system. a, Projection of the trajectory in (u,v). b, Projection of the
trajectory in (u,w). c, Projection of the trajectory in (v,w). d, Evolution of u in time. Inset: zoom
in on the first burst. e, Evolution of w in time.

Next, we focus on the spatio–temporal structure of each burst. We define the onset
time for each point in the system as the first time its activity crosses an arbitrary
(high) threshold (ui j(t)≥ 0.8 in our case). From the analysis of the onset times we
observe that the bursts are indeed traveling fronts that nucleate at specific points
in the system. In Figure 4.8 we show two examples for a system with periodic
boundary conditions. The traveling front is almost perfectly circular, indicating that
the propagation is governed by the diffusive part of the spatial coupling, whereas
the avalanche field VI plays very little role during propagation. On the other hand,
the avalanche field is the one governing the nucleation process as we will now see.

The analysis of the set of nucleation points allows us to generate the nucleation PDF,
in the same way we did in Chapter 2, i.e., we define the nucleation site as the point
with the smallest onset time for a given burst. The results for a particular network are
shown in Figure 4.9, where we compare the map obtained with the extended system
(Figure 4.9a), with the one from the full neuron dynamics (Figure 4.9b). Both maps
are very similar, showing the same main nucleation sites and overall shape. Only
some of the intermediate nucleation sites differ between the two, information that
is lost in the construction of the avalanche field.
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Figure 4.8 Traveling pulses. Two examples of traveling pulses for a system with periodic
boundary conditions and S =5 mm2×5 mm2. The onset time is defined as the first time a point
crosses an arbitrary threhold uth = 0.8. a, Pulse that originates in the middle right area. a, Pulse that
originates in the middle left area. The waves present an average velocity of 〈V 〉=(120±20)mm/s.
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Figure 4.9 Nucleation maps. Nucleation maps obtained with the two models based on the
same original system with S = 4mm2×4mm2, ρ = 400neurons/mm2 and periodic boundary
conditions. a, Nucleation PDF generated from the nucleation points in the extended system. b,
Nucleation PDF obtained from the full neuron dynamics.
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The analysis of the different nucleation points also shows that they are uncorrelated
in time, i.e., the location of nucleation point is independent of the location of the
previous one.

4.5 Conclusions

In this chapter we have developed a coarse–grained approach to neuronal cultures at
the mesoscale, where the whole activity of the culture is encoded in field variables.
We show that modeling the intrinsic noise requires a nontrivial form in order to
reflect the inner network structure and thus account for the phenomenon of noise
focusing identified in Chapter 2. The model is based on the original Fitzhugh-
Nagumo model, and incorporates the minimum ingredients required to describe the
behavior of spontaneous activity in neuronal cultures. The model is able to replicate
the phenomenon of heterogeneous nucleation, i.e., bursts develop in specific sites of
the system and propagate in a wave–like fashion. It also reproduces the characteristic
time scales associated to wave propagation and synaptic depression.

This description formalizes the global physical picture observed in Chapter 2 regard-
ing the noise focusing phenomena. The emergence of a vector field at the coarse–
grained level, that reflects the dynamical properties of the underlying avalanche
dynamics at the microscopic level, is the key element behind the heterogeneous
nucleation. The direction and modulus of the vector field reflect the directionality
of the large avalanches. The field, however, must have a stochastic component itself
at the mesoscale, to guarantee the randomness of the nucleation events.

To model the stochastic part of the avalanche field we chose a white noise in time
and space for simplicity, which is already sufficient to obtain the heterogeneous
nucleation behavior. However, it cannot capture the richness of the self–similar
structure of the avalanche dynamics.

This theoretical approach clearly reflects the idea that the nucleation sites in this
problem do collect the activity from large basins of attraction, as it is advected by
the vector avalanche field. Interestingly, this mesoscale description reproduces to
some extent the integrate-and-fire dynamics of the microscopic elements, but now
for nucleation sites, as they collect the spontaneous activity around them to the
point that they fire global bursts.



123

5
Stochastic quorum percolation

In Chapter 2 we have drawn several parallelisms to try to explain the mechanisms be-
hind burst generation within the framework of of quorum percolation (QP), however,
several differences exist between the two. Quorum percolation [Cohen 2010], which
is similar to bootstrap [Tlusty 2009] and k-core percolation [Dorogovtsev 2006], is
an extension of percolation theory in which a node (neuron) requires a minimum
quorum of m simultaneous inputs to fire.

The original QP model was developed to understand the collective dynamics of
neuronal networks under external stimulation [Soriano 2008]. In these experiments,
the network connectivity is weakened with different drugs and an external current is
applied to the system to study their response. It was found that for specific values of
the applied current and drug concentration, the system undergoes a discontinuous
phase transition, where a small increase in the current is able to generate a wide
response in the system, where all the neurons are excited. The QP model is able
to accurately describe this transition and predict some of the properties of the
underlying network.

Several groups have tried to extend the concept of QP to include dynamics
[Tlusty 2009, Renault 2013] and spontaneous activity [Eckmann 2010], with vary-
ing levels of success. In this chapter we analyze our networks under the QP formal-
ism and develop a dynamical protocol for our simulation framework that further
connects QP with the real dynamics. Finally, we introduce a generalization of QP
called subquorum percolation, that includes the dynamics in a natural way and also
describes the effects of noise in the neuron dynamics.
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5.1 Introduction to quorum percolation

We summarize the basic formalism of QP following the description from [Tlusty 2009]
and [Cohen 2010] (see the references for more details). In the QP model, a neuron
can be either in an active or inactive state, whose evolution is described by an
iterative process, where the state of a neuron si can be expressed as

si(t +1) = si(t)+(1− si(t)Θ

 N

∑
j=1

Ai js j−m

 , (5.1)

where si = 1 if the neuron is active and 0 otherwise. Θ is the heaviside step function,
N the total number of neurons, Ai j the (binary) adjacency matrix of the network
and m the minimum inputs required to fire. We can see from Equation (5.1) that a
neuron only changes to active when ∑ j Ai js j ≥ m, i.e., at least m of its inputs are
active. The iterative process runs until no more state changes are detected within an
iteration. Note that a neuron that is turned ’on’, stays ’on’ forever.

The characteristic observable of the iterative process described in Equation (5.1)
is the fraction of active nodes at any given time f (t), where the initial condition
f (0), i.e., the initial fraction of lit nodes, acts as a control parameter. Performing an
ensemble average of Equation (5.1) results in the self-consistency equation

Φ = f +(1− f )Ψ(m,Φ), (5.2)

where Φ = lim
t→∞

f (t) and f = f (0). The function Ψ(m,Φ) describes the probability
that there is a quorum of m inputs to fire, and for the case of directed random
graphs1 can be expressed as

Ψ(m,Φ) =
∞

∑
k=m

pk

k

∑
l=m

(
k
l

)
Φ

l(1−Φ)k−l , (5.3)

where pk is the input degree distribution of the network. Note that Equation (5.2)
can be expressed as

φ −Ψ

1−Ψ
= f , (5.4)

and solved numerically. In the limit of large k̄ = 〈k〉 and m, Ψ(m,Φ) can be
approximated by

Ψ(m,Φ) =Ψ(m/Φ)∼
∞∫

k=m/Φ

pk dk, (5.5)

1 In the limit of zero clustering.
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and in the case of a Gaussian degree distribution pk = (2πσ2
k )
−1/2 exp(−(k−

k̄)2/(2σ2
k )) we can write

ψ(m/Φ)' 1
2

erfc

m/Φ− k̄√
2σ2

k

 , (5.6)
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Figure 5.1 Quorum percolation. a, Numerical solution of Equation (5.2) for different values
of m in a network with Gaussian degree distribution and k̄ = 50, σk = 15. The solid vertical line
identifies the size of the giant component g, and the dashed line shows the envelop of the different
giant components. b, Size of the giant component g for different values of m. The largest m with
non–zero giant component defines the critical point mc.

where erfc is the complementary error function. For this particular approximation
the solution of Equation (5.2) is shown in Figure 5.1a. For large m the solution is
a single–valued curve, where the excited fraction starts to differ from the initial
fraction only for large values of f , i.e., the system barely reacts to the initial
perturbation. For small m, however, the curve shows a multi–valued region, with
a characteristic S shape, characteristic of a first order phase transition. The upper
and lower branch solutions are stable, whereas the middle one is unstable. For a
finite system, the multi–valued region indicates bi–stability2, and for a given initial
fraction the system has two stable solutions. To be consistent with previous studies
[Cohen 2010, Renault 2013] we define the giant component g as the difference
between the two stable solutions of Φ at the largest f , i.e., where (where dΦ/d f →
∞). g is the difference between the excited fraction of the two stable states3 (marked
in Figure 5.1a with a thick line), and its dependence with m is shown in Figure 5.1b.
There exists a critical mc at which the giant component disappears and the system

2 For an infinite system, this corresponds to the coexistence region.
3 For an infinite system, the giant component is the infinite cluster.
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undergoes a second order phase transition. At the vicinity of the critical point, the
size of the giant component can be described with a typical power–law scaling

g(m) ∝

(
mc−m

mc

)β

, (5.7)

for m→ m−c and β being the characteristic scaling exponent. The exponent β ,
however, is not universal, and depends on the specific details of the network structure
[Renault 2014].

The fact that the critical exponent β changes with the network structure, already
suggests that the whole g(m) curve might also change. Hence, it is possible to
exploit it from an experimental point of view, where the curve g(m) might be much
simpler to obtain than the network structure itself. This was already done by J.
Soriano and coworkers to observe differences in network structure between pre and
postnatal hippocampal cultures, as well as to study the effects of inhibition in the
network [Soriano 2008].

5.2 Quorum percolation in metric networks

Within the quorum percolation formalism, we proceed to study the structure of the
QP transition using the metric networks we generated in Chapter 2 and compare
them with their random graph counterparts. Given that our networks are far from
being tree–like, we cannot use any of the approximations shown above, and have
to simulate the whole iterative process described in Equation (5.1). Also, to obtain
the characteristic curves observed in the experiments [Soriano 2008] we assign an
arbitrary threshold Ri to each node, drawn from a Gaussian distribution with mean
R̄ = 10 and standard deviation σR = 2.5. Hence, the initial fraction f is mapped to
a new control parameter V , where

f (V ) =
1
N

N

∑
i=1

Θ(V −Ri), (5.8)

where Θ is the Heaviside step function. Within this description, for a given value of
V , only the neurons with Ri smaller than V are ignited. This way, the functional form
of Φ(V ) when m→ ∞ is that of an error function, similar to the experimental one.
Also, the control parameter corresponds to the applied voltage in the experiments.

The characteristic curves Φ(V ) for one of the metric networks used in Chapter 2
are shown in Figure 5.2, where we observe the same behavior as in the original
QP with random graphs. This is to be expected, given that in [Cohen 2010] they
already reported a good match between simulations in finite random graphs and
the theory, even though a finite random graph has finite clustering coefficient. Even
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Figure 5.2 Quorum percolation in metric networks. a, Set of Φ(V ) curves for the QP model
run on a network with ρ = 100neurons/mm2 on a 4 mm2×4 mm2 area with periodic boundary
conditions. Main network observables: 〈k〉= 74, σk = 14, 〈CC〉= 0.23. The legend shows the m
used for each curve. Giant component g is represented by a thick vertical line (it disappears for
m > 56). b, Zoom in around the transition zone for the m = 47 curve. The region of bi–stability is
represented by the solid area and the giant component g by the vertical thick line. In this region
the two solutions coexist (which correspond to the stable solutions of Equation (5.2)), and the
average over many realizations 〈φ〉 is shown as a dashed line. The shaded area around the lower
branch denotes its standard deviation.

though the metric networks we have used have a much higher clustering coefficient
〈CC〉 ≈ 0.26, their in–degree distribution is Gaussian (see Equation (2.23)), and the
in–degree distribution is almost all that matters in QP.

The changes in the QP transition are better observed in Figure 5.3, where we
compare the QP curves of a metric network and its random graph counterpart
(accomplished by randomly shuffling the connections while keeping the same p(k)).
In Figure 5.3a we see that for very small m, the transition appears for a lower
voltage in the random network. For all other values of m, however, the transition fist
occurs in the metric network, although the differences between the two are always
small. In Figure 5.3b we show the dependence of the giant component g with m,
where we observe that both networks have the same mc. Note that m is an integer
by definition, hence we cannot appreciate differences in mc below the unity (unless
we extended the QP formalism to allow m ∈ R [Renault 2014]).

In finite systems, it is difficult to obtain an accurate value of mc and of g when
m→ mc, specially if we are interested in a protocol that can be replicated exper-
imentally. By definition g is the relative size of the largest cluster at the end of
the bistable region (largest V ), and in QP this corresponds to obtaining the largest
k–shell. To obtain the k–shell, we need the adjacency matrix, and this informa-
tion is inaccessible in an experimental setup. However, we can approximate the
size of g with different realizations of the initial fraction. In the bistable region,
each realization of V will trigger the formation of the infinite cluster with a given
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Figure 5.3 Differences in QP between metric and random networks. a, Set of Φ(V ) curves
for metric networks (solid lines) and their random graph equivalents (dashed lines) for the same
network used in Figure 5.2. Note that for m = 2 the transition on the random graph occurs at a
lower voltage, whereas for higher values of m the order is inverted. b, Size of the observed giant
component g(m) for the same network. The critical point mc, is the same for both the metric and
the randomized network, however, the shape of the curve differs.

probability. However, sometimes it might not. Indeed, in the bistable region we
observe a bimodal distribution of excited fractions Φ for each V , and its difference
corresponds to g, as we have seen in Figure 5.3b. This definition, however, becomes
problematic when we are close to mc, given that g is extremely small. For small g,
the bimodal distribution of Φ can not be observed, since the distributions around
each ’mode’ overlap.

To overcome this effect, and to have a systematic calculation of g we proceed as
follows. We first compute the system response for m→ ∞, and obtain the curve
for the excited fraction as well as its variance σΦ(∞,V ) for each value of the
external stimulation. Then, for each of the Φ(m,V ) curves we also compute its
variance σΦ(m,V ), and define the transition region where σΦ(m,V )≥ 2.5σΦ(∞,V ),
i.e., when the standard deviation of the excited fraction is much larger than the
corresponding standard deviation of the disconnected network. Indeed, what we
observe is that in the region where the infinite cluster appears, the variance of
the excited fraction increases substantially. Within the transition region, we try to
separate the different realizations of Φ in two groups with a k–means clustering
algorithm [Lloyd 1982]. If there is no significant overlap between the two groups,

i.e., |µ1−µ2| ≥ 3
√

σ2
1 +σ2

2 , where µ and σ are the mean and standard deviation
of each cluster respectively, we consider that a finite g exists.

The characterization of the giant component g for different metric networks and
their randomized counterparts is shown in Figure 5.4. In Figure 5.4a we show
the g(m) curves for five different densities. We observed systematic differences
between the metric and the randomized networks in every case, specially when the
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Figure 5.4 Giant component in metric networks. a, Sizes of the giant component g(m) for five
different densities in metric networks (solid lines) and their randomized counterpart (dashed lines).
b, Collapse of the g(m) curves when m is rescaled by m/ρ(ρ∗/m∗c), where ρ is the density, and
ρ∗ and m∗c the density and mc for ρ = 100neurons/mm2 respectively.

giant component is large. It appears that for the same m the giant component in the
metric network is systematically bigger. mc, however, appears to be larger for the
random network in most cases. In Figure 5.4b we show the collapse of the same
g curves when we rescale m by m/ρ(ρ∗/m∗c), where ρ is the density, and ρ∗ and
m∗c the density and mc for ρ = 100neurons/mm2 respectively. For large densities
there is a reasonable data collapse (one for the metric networks and another for the
randomized versions), and the differences in the g(m) are consistent.

The QP formalism makes several assumptions on the underlying system, namely that
the networks are tree–like, and that each neuron stays ’always on’ for the duration
of the stimulation. We have already checked the effects of network structure in
the previous section, and now we explore the possible effects the real neuronal
dynamics might have on the stimulation process. We devise a stimulation protocol,
using the neuronal dynamics model presented in Section 2.1.1, where we inject an
input current to each neuron of the form

Ii(t) =
V
Ri

(
Θ(t− t f )−2Θ(t− (t f −

1
2

∆))+Θ(t− (t f +∆))

)
, (5.9)

which corresponds to a bipolar pulse at t = t f with amplitude V/Ri and period ∆ ,
where Θ is the Heaviside step function and Ri the internal resistance of each neuron,
which has the same role as the threshold we defined in Section 5.2.
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Figure 5.5 Stimulation protocol with neuronal dynamics. a, Set of Φ(V ) curves for metric
networks (solid lines) and their random graph equivalents (dashed lines) for the same network
used in Figure 5.2 but simulating the stimulation protocol with the full neuronal dynamics. The
differences between the two networks appear to be smaller than in the QP model. b, Size of the
observed giant component g(m) for the same network. The critical point mc, is the same for both
the metric and the randomized network, however, the shape of the curve differs.

5.3 Stochastic modeling of subquorum percolation

We now introduce a generalization of quorum percolation, called stochastic quorum
percolation (SQP), that takes into account some of the underlying dynamics and is
capable of explaining both a protocol of external stimulation as well as spontaneous
activity.

In the original QP a neuron either fires when it receives m inputs or it does not,
however, real neurons are driven by noise, and always have a finite probability of
firing. For simplicity, we assume that the internal noise of the neuron is characterized
by a Poisson process with a given rate λ (a shot noise). This noise model is inspired
on minis (spontaneous miniature post synaptic currents), which in dense cultures
have the same strength as evoked currents. Hence, each time a mini arrives is
equivalent to receiving one input. Within this description, the probability that a
neuron fires spontaneously within a time ∆ t is

p0 = e−λ∆ t
∞

∑
i=m

(λ∆ t)i

i!
= P(m,λ∆ t), (5.10)

where P is the regularized gamma function, and we chose ∆ t as the characteristic
integration time of synaptic currents ∆ t ≈ 20ms. Hence, the spontaneous firing
frequency of a neuron is ω0 ≈ p0/∆ t. Within this model, the neuron spontaneously
fires when it receives the required m inputs from a Poisson process with rate λ

within ∆ t. Hence, we easily generalize to the case where the neuron is receiving
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external inputs from other neurons, which is equivalent to lowering the requirement
to fire from m to m−k, where k is the number of external inputs the neuron receives
within ∆ t, i.e.,

pk = P(m− k,λ∆ t), (5.11)

and in the limit of large m and low noise λ∆ t � 1, we recover the QP model
pk = Θ(m− k). To simulate the dynamics of the system no extra ingredient is
required.

With this model we can study the same type of transition as in the QP model,
where now p0 plays the role of the initial fraction f , and instead of an iterative
process we now have a Markov process (memoryless) that models the dynamics
with discrete time, where each neuron can fire with probability pk at every step.
Instead of characterizing the response of the system to an initial perturbation f , in
the SQP model we analyze the steady state of the system. Note that if the system
undergoes the equivalent of the first–order QP transition, activity becomes self–
sustained and a k–shell (k > m) forms, i.e., a subgroup of active neurons that share
k inputs between them. This model has only two parameters (for a given network),
the required number of inputs to fire m and x = λ∆ t, a dimensionless parameter
denoting the noise strength.
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Figure 5.6 Subquorum percolation transition. a, Characterization of the SQP transition for
one of the networks used in Figure 5.4 (ρ = 500neurons/mm2) and its randomized counterpart.
The differences between the transition due to the network structure are maximal for low m. b,
Same characterization as in Figure 5.6a, but using the ’raw’ noise strength x instead.

In Figure 5.6 we characterize the SQP transition by checking, for a given m, the
lowest level of noise required for the system to percolate in finite time4, for both

4 In infinite time there will always be a non–zero probability of the system to spontaneously
percolate, however, we define an upper–bound to the percolation time of 5000 s.



132 5. Stochastic quorum percolation

metric networks and their randomized counterpart. Given that ω0 = P(m,x), we
can characterize the transition with either ω0 (Figure 5.6a) or x (Figure 5.6b). We
observe that the differences in the percolation point due to the network structure
are always small in x, and become almost non–existent for large m. When we look
at ω0, however, given its non–linear dependence on x, the differences are much
greater. Indeed, for small values of m the difference in ω0 might be up to half an
order of magnitude.

Given that this is a dynamical model, we can also compute the characteristic time it
takes for the system to percolate, called the ignition time (IT), which, when coupled
with the characteristic time of synaptic depression, is the equivalent to the IBI in a
neuronal culture. This dependence is shown in Figure 5.7a, where we compare the
IT distribution for m = 15 between a metric network and its randomized counterpart.
Note that the profiles between the two are completely different, even though they
both converge to the same value for large noise. This effect clearly indicates that
the differences in the network topology are greatly amplified (close to the transition
point) when we take into account the underlying dynamics, something that cannot
be observed in analyses that do not take into account the dynamics. For a given
noise, the differences in the average IT might be orders of magnitude depending on
the network topology. In Figure 5.7b we also show the characteristic distribution of
ITs in the metric network. Its profile is consistent with the characteristic exponential
decay of a nearly Poissonian process with a constant time rate. It differs from
the characteristic profile observed in real networks because there is no recovery
variable (STD) in this model (see Section 2.2.1). It is this recovery component
which dominates the IBI time scale, typically much larger than the IT.
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Figure 5.7 Characterization of ITs in SQP. a, Average ignition time (IT) for the SQP model in
the same metric networks used in Figure 5.6 at m = 15. Note that the dependence of the IBI on x
is extremely different between the two networks. b, Distribution of ITs in the metric network for
x = 5.9.
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Figure 5.8 Avalanche dynamics. a, Distribution of avalanche sizes in the SQP model for m = 20,
using the same metric network as in Figure 5.5. The three curves are chosen to show the transition
from sub to supercritical. b, Same as Figure 5.8a but using m = 10. The characteristic slope on the
first decade is the same for both values of m and its exponent is ∼ 2.2±0.1.

Within the SQP model we can also study the dynamic structure, which is also
characterized by activity avalanches, as in the full model (see Section 2.4). However,
there is an important difference. In the full model, the background avalanches
structure was evolving in time due to the recovery from synaptic depression. In
this model, the distribution of avalanches is fixed and we can study its profile for
different values of x. The distribution of avalanche sizes is shown in Figure 5.8,
and we observe that the distribution approaches a power–law for a given x with
an exponent of ∼ 2.2±0.1 (see Figure 5.8), similar to the one observed in the full
dynamics in Chapter 2. For smaller x the distribution decays faster, whereas for
higher x the distribution shows a characteristic ’bump’ for large avalanche sizes.
The structure of these avalanches resembles the characteristic behavior of a second
order phase transition, with the avalanche distribution being either sub, critical or
supercritical.

Note that for the avalanche distributions shown in Figure 5.8 we have discarded the
percolation events, which would correspond to an avalanche with size bigger than
the system size. These percolation events start to appear near the critical ’x’, but they
usually happen before. It is as if both types of transitions coexist, a discontinuous
one, equivalent to QP, and a continuous one, equivalent to classical percolation
transition. Note that in QP a continuous transition also exists, but only at mc. In the
SQP model it exists at any m. An in–depth study of these questions is deferred to
future work.



134 5. Stochastic quorum percolation

5.4 Conclusions

In this chapter, we have explored the collective behavior of neuronal cultures within
the framework of quorum percolation, with the goal of uncoupling the effects of the
network structure from the dynamics. We have observed that differences in network
topology play little role in the characteristic transition of quorum percolation.
However, these differences can be measured and observed. In particular, the shape
of the curve of the giant component g(m) can be used to distinguish between
different topologies.

We have also generalized the simulation framework presented in Chapter 2 to in-
clude a stimulation protocol that mimics the QP model and the experimental details.
Within this model, the differences on the QP transition due to the network structure
appear to be even smaller than in the original QP model, however, differences in
the g(m) curve can still be observed.

Finally, we have generalized the QP model into a stochastic, dynamic model, called
stochastic quorum percolation, which takes into account the effects of the noise
as well as the mechanisms of noise amplification shown in Chapter 2. This simple
model reproduces most of the observed dynamical features of the original neuron
model and shows that noise plays a very important role in the system behavior. This
model confirms some of the underlying hypothesis developed in Chapter 2, showing
that small differences in network structure are greatly amplified when noise and
the integrate–and–fire dynamics are combined, which cannot be observed as clear
within a static description. These effects are inherently dynamic, and thus missed
by previous approaches.
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6
Network inference

As we have discussed in Section 1.5, network inference is of paramount impor-
tance in neuroscience. Neuronal dynamics are fundamentally constrained by the
underlying structural network architecture, yet much of the details of this synaptic
connectivity are still unknown even in neuronal cultures in vitro. Possessing a fully
detailed map of the connectome, and knowing the set of rules that govern network
connectivity is essential to understanding brain dynamics and behavior. Although
the field of network and causal inference has developed greatly in the last century,
there are still many challenges to overcome, specially in neuroscience, where data
is extremely noisy, and the number of neurons and possible causal relations is vast.
The development of new reconstruction techniques and protocols that can be tested
on well controlled environments is a major challenge for the field.

For this reason, different studies have focused on in vitro neuronal cultures of
dissociated neurons [Eckmann 2007, Wheeler 2010]. As we have previously seen,
neuronal cultures are highly versatile and easily accessible in the laboratory. Unlike
in naturally formed neuronal tissues, the structural connectivity in cultures can be
dictated to some extent [Wheeler 2010], and even neuronal dynamical processes
can be regulated using pharmacological agents or optical or electrical stimulation.
These features have made neuronal cultures particularly attractive for unveiling the
processes shaping spontaneous activity, including its initiation [Maeda 1995], syn-
chronization [Eytan 2006] and plasticity [Wagenaar 2006a, Cohen 2008], as well as
self-organization [Pasquale 2008] and criticality [Tetzlaff 2010]. Moreover, some
studies also showed that spontaneous activity in in vitro preparations shares several
dynamical traits with the native, naturally formed neuronal tissues [Mazzoni 2007].
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Neuronal cultures also provide the most straightforward and natural environment for
the development and testing of tools and techniques that identify directed functional
interactions between neurons in a complex network. Here we present an approach
based on the Generalized Transfer Entropy (GTE) method [Stetter 2012], to the
reconstruction of connectivity of simulated neuronal networks of both excitatory
and inhibitory neurons.

Inhibition is a major player in regulating neuronal network dynamics, and the
regulation of the excitatory-inhibitory balance is crucial for optimal circuit func-
tion [Poil 2012, Lombardi 2012]. In the brain, inhibition shapes cortical activity
[Isaacson 2011], dominates sensory responses [Haider 2013], and regulates motor
behavior [Arber 2012]. Severe behavioral deficits in psychiatric diseases such as
autism and schizophrenia have been ascribed to an imbalance of the excitatory and
inhibitory circuitry [Yizhar 2011b]. Despite the importance of inhibition, functional
connectivity studies often disregard it because of the difficulty in its identification.
Hence, unraveling inhibitory connections, and their interplay with the excitatory
ones in shaping network dynamics, is of major interest. We show here that the
GTE-based approach that was previously used for the inference of excitatory con-
nectivity can be extended with virtually no modifications to networks including as
well inhibitory interaction, whose dynamics is once again reproduced by realistic
computational models for which the ground-truth connectivity is known. We reveal
that the most difficult inference problem is not the identification of a link, be it
excitatory or inhibitory, but rather the correct labeling of its type. We show that
an elevated accuracy of labeling of both excitatory and inhibitory links can be
obtained by combining the analysis of network activity in two conditions, a first one
where both excitation and inhibition are active, and a second one where inhibition
is pharmacologically removed. We show as well, however, that the inference of
link types remain extremely uncertain with current experimental protocols. As a
perspective solution, we foresee, based on extensive simulations, that significant
improvements in both reconstruction and labeling performance can be achieved by
enhancing the spontaneous firing of a culture through a weak external stimulation.

6.1 Introduction to generalized transfer entropy

In a previous work [Stetter 2012], Stetter and coworkers investigated the assess-
ment of excitatory-only structural connectivity from neuronal activity data (with
inhibitory synaptic transmission blocked). For this purpose they have developed an
extension of transfer entropy (TE), termed Generalized Transfer Entropy (GTE) to
test the accuracy of the connectivity reconstruction method by considering realis-
tic computational models that mimics the characteristically bursting dynamics of
spontaneously active neuronal cultures. When Comparing diverse reconstruction
approaches, GTE performs superiorly, even when systematic artifacts such as light
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scattering are explicitly added to the surrogate data. Besides the inclusion of cor-
rections coping with the poor temporal resolution of typical calcium fluorescence
recordings, a key ingredient making GTE successful is dynamical state selection,
i.e. the restriction of the analysis to a dynamical regime in which functional interac-
tions are largely determined by the underlying hidden structural connectivity. In
particular they show that it is necessary to restrict the analysis to inter-burst regimes,
while consideration of bursting epochs leads to inference of exceedingly clustered
structural topologies [Stetter 2012].

Transfer Entropy (TE) [Schreiber 2000] is an information theoretic measure that
quantifies the statistical coherence between different signals evolving in time. It is
non–symmetric and is a better predictor than mutual information (MI), since it can
filter out information due to a common history and shared inputs. Transfer entropy
is equivalent to Granger Causality for Gaussian variables [Barnett 2009], but can
instead be used with almost any input signal.

Following [Schreiber 2000], almost any process I can be described by a correspond-
ing Markov process of order k where

p(in+i|i(k)n ) = p(in+i|i(k+1)
n ), (6.1)

i.e., the probability to find I in state p(in+1) only depends on its last k-th values,
where we have used the shorthand notation i(k)n = (in, . . . , in−k+1).

We can define the entropy rate of the process I as

hI =−∑ p(in+1, i
(k)
n log p(in+1|i(k)n )), (6.2)

which measures the average number of bits needed to encode the state p(in+1) if its
past is known.

If we generalize to two processes (I,J), we can measure the deviation from the
following Markov property

p(in+1|i(k)n ) = p(in+1|i(k)n , j(l)n ), (6.3)

which will only be valid when the evolution of I does not depend on the past of J,
i.e., when there is no information flow from J to I. Transfer Entropy measures the
deviation from this assumption by computing the corresponding Kullback entropy

TJ→I = ∑ p(in+1, i
(k)
n , j(l)n ) log

p(in+1|i(k)n , j(l)n )

p(in+1|i(k)n )
. (6.4)

We can see that when Equation (6.3) holds, the logarithm in Equation (6.4) is zero,
denoting statistical independence between the two processes, i.e., the knowledge of
the past values of J has no effect on the predictability of I.
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Generalized Transfer Entropy (GTE)1 [Stetter 2012] is an extension of the original
Transfer Entropy formulation, where the signals are also conditioned on the global
dynamical state of the system and same–bin interactions are allowed. In the case of
fluorescence signals, this state selection is achieved by conditioning the analysis
to the regime where the population average of the time series G is lower than a
given threshold g̃. Same bin interactions are included due to the limitations of
the temporal resolution of calcium imaging. Since time bins are usually ∼20 ms,
"instantaneous" interactions between different signals need to be considered. GTE
can be expressed as

GTEJ→I = ∑P(in, i
(k)
n−1, j(k)n−1+S|gn < g̃) log

P(in| i(k)n−1, j(k)n−1+S,gn < g̃)

P(in| i(k)n−1,gn < g̃)
. (6.5)

where gn is the average population firing at step n and the shift variable S ∈ {0,1}
denotes the aforementioned inclusion of same-bin (instantaneous) interactions for
S = 1, which is also called the Instantaneous Feedback Term (IFT) correction.
Furthermore, the time-series of calcium fluorescence are high-pass filtered by
mean of a discrete difference operator, as a straightforward attempt to enhance the
visibility of firing events drowned in noise. Note that GTE reduces to conventional
Transfer Entropy for S = 0 and g̃→∞, i.e. when same-bin interactions are excluded
and when the selected state encompasses the whole observed dynamics. The Markov
order of the underlying process is here somewhat arbitrarily set to k = 2, after
extensively checking its effect on the reconstructions. k = 2 results to be the lowest
dimensionality in the probability distribution allowing to separate actual interactions
from signal artifacts like light scattering.

Note that for our datasets there is no need to perform any delay embedding of the
time-series to reach satisfying performance levels. Methodological developments
along the lines of [Wibral 2011, Vicente 2011] would be however desirable for
future applications to real experimental data. Also, if we are interested in recon-
structing networks from experimental data, where the truth is not known, a method
to establish statistical significance based on the bootstrapping of the original data,
is also required.

6.2 Theoretical and computational description

The networks and neuron models used in this chapter differ from those used
in Chapter 2 and we include their description here for completeness. The main
reason for these differences is due to trying to decouple the reconstruction methods
from specific dynamical models. Even though the model presented in Chapter 2

1 Code for the Generalized Transfer Entropy method is publicly available at https://github.com/
olavolav/TE-Causality.

https://github.com/olavolav/TE-Causality
https://github.com/olavolav/TE-Causality
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accurately predicts most of the dynamical observables of neuronal cultures, for
the task of network inference, we are interested in methods that are independent
of the underlying dynamics. Hence the use of a different model. The methods
presented here also describe the dynamics of neuronal cultures however, there
are some key differences. The model presented here does not predict the onset of
bursting dynamics and wave nucleation (the networks are essentially random) and
the neuronal dynamics are as simple as possible (linear integrate–and–fire with
short–term synaptic depression).

Although the use of a random network might seem questionable, here we are dealing
with the dynamics of a small population (from 100 to 1000 neurons). For such
a small population, the network can indeed be approximated by a random graph,
since this corresponds to a region with a size of the order of a nucleation site (see
Chapter 2).

6.2.1 Network generation

We randomly distribute N = 100 neurons over a square area of 1 mm2. Neurons are
labeled as either excitatory with probability pE = 0.8 or inhibitory with pI = 0.2.
A directed connection (link) is created between any pair of neurons with fixed
probability p = 0.12, giving rise to a directed Erdős-Rényi network[Albert 2002].
The resulting network is defined by the adjacency matrix A, whose entries a ji = 1
denote a connection from neuron j to neuron i ( j→ i). The average full clustering
coefficient of the network [Fagiolo 2007] is given by

CC =

〈(
A+AT

)3
ii

2Ti

〉
i

, (6.6)

where AT is the transpose of A and 〈〉i denotes average over index i. Ti is defined as

Ti = dt
i
(
dt

i −1
)
−2d↔i , (6.7)

where dt
i is the total degree of node i (the sum of its in– and out–degree) and d↔i is

the number of bidirectional links of node i. The clustering coefficient of the network
after its construction is ∼ 0.12, a value that is then raised up to a target one of 0.5
by following the Bansal et al. construction [Bansal 2009]: Two existing links ai j
and akl are first chosen at random, with i 6= j 6= k 6= l. These links are then replaced
by ail and ak j, given that they do not already exist. This step is repeated until the
desired clustering coefficient is finally reached within a tolerance of 0.1%.

This above-chance clustering level is generated to account for experimental obser-
vations of clustered connections in neuronal local circuits [Perin 2011]. We do not
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perform here a systematic study of the impact of CC on reconstruction performance,
which was already performed in [Stetter 2012].

6.2.2 Network dynamics

Neurons in the simulated culture are modeled by simple integrate-and-fire units, of
the form

τm
dVi

dt
=−(Vi−Vr)+

1
gl

(
IA
i + IG

i +η

)
, (6.8)

where Vi is i-th neuron’s membrane potential and Vr = −70mV its resting value,
τm = 20ms is the membrane time constant, gl = 50pS is the leak conductance, IA

and IG the excitatory (AMPA) and inhibitory (GABAA) input currents respectively,
and η a noise term. When the membrane potential reaches the threshold value
Vt =−50mV the neuron fires and its membrane potential is reset to a value Vr =
−70mV, which is maintained for a refractory time τr = 2ms during which the
neuron is prevented from firing.

Neurotransmitters are released as a response to a presynaptic action potential fired at
time tk, binding to the corresponding receptors at the postsynaptic side of its output
neurons. The binding of neurotransmitters at the receptors triggers the generation
of postsynaptic currents IA or IG, depending on the presynaptic neuronal type. The
total input current received by a given neuron is described by

Ix
i (t) = gx

N

∑
j=1

∑
tk
j

Ai jEx
j (t)α(t− tk

j − tx
d), (6.9)

where tx
d is a transmission delay (mimicking axonal conduction), with tA

d = 1.5ms
and tG

d = 4.5ms. gx is the synaptic strength, which is adjusted to obtain the desired
bursting rate. The value of gA = 7.75pA in a network with inhibition silenced
provided a bursting rate of ∼0.1 Hz. When inhibition is active, a comparable
bursting rate of of ∼0.12 Hz is obtained by setting gG = −2gA. Ex

j (t) is a term
accounting for short–term synaptic depression, and α(t) is an alpha shaped function
of the form

α(t) = exp
(
1− t/τs

) t
τs

Θ(t), (6.10)

where τs = 2ms represents the synaptic rise time and Θ(t) is the Heaviside step
function.

Short–term synaptic depression accounts for the depletion of available neurotrans-
mitters at the presynaptic terminals due to repeated activity [Zucker 2002]. The
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neurotransmitters dynamics at the synapses of neuron i is described by the set of
equations [Tsodyks 1997]:

dRx
i

dt
=

1−Rx
i −Ex

i
τx

r
−U ∑

tk

Rx
i (t

k
i )δ (t− tk

i ),

dEx
i

dt
=−

Ex
i

τi
+U ∑

tk

Rx
i (t

k
i )δ (t− tk

i ), (6.11)

where Rx
i and Ex

i are the fraction of available neurotransmitters in the recovered and
active states, respectively. τx

r is the characteristic recovery time with τA =r 5000
ms and τG

r = 100 ms. τi = 3 ms is the inactivation time and U = 0.3 describes the
fraction of activated synaptic resources after an action potential.

6.2.3 Simulating calcium fluorescence signals

Based on the simulated spike data, synthetic calcium fluorescence signals are
generated according to a model that incorporates the calcium dynamics in the
neurons and experimental artifacts. The former describes the saturating nature of
calcium concentration bound to the calcium dye inside the cells, while the latter
treats the noise of the recording camera as well as light scattering due to anisotropies
in the recording medium [Stetter 2012].

Each action potential of a neuron i at time t leads to the intake of ni,t calcium ions
through the cell membrane, raising the calcium concentration inside the cell. A
fraction [Ca2+]i,t of the Calcium ions bind the fluorescence dye by a fixed amount
ACa = 50µM, and are slowly freed with a time scale τCa = 1s. This process is
described by the equation

[Ca2+]i,t − [Ca2+]i,t−1 =−
τimage

τCa
[Ca2+]i,t−1 +ACa ni,t , (6.12)

where τimage is the simulated image acquisition frame rate.

The level of calcium fluorescence F0
i,t emitted by a cell is modeled by a Hill function

of the bound calcium concentration (with saturation level Kd = 300µM) together
with an additive Gaussian noise term ηi,t characterized with a standard deviation
σnoise = 0.03 [Mishchenko 2011b], i.e.

F0
i,t =

[Ca2+]i,t

[Ca2+]i,t +Kd
+ηi,t . (6.13)

The level of fluorescence recorded by the camera at a given neuron is not indepen-
dent of neighboring cells due to the introduction of simulated light scattering. We
incorporate this artifact by adding to the monitored cell a fraction Asc = 0.15 of the
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fluorescence from neighboring cells, which is weighted according to their mutual
distance di j by a Gaussian kernel of width λsc = 0.05mm. The total fluorescence
captured in a neuron was then given by:

Fi,t = F0
i,t +Asc

N

∑
j=1, j 6=i

F0
j,t exp

{
−
(
di j/λsc

)2
}
. (6.14)

6.2.4 Optimal binning

The probability distributions in GTE as defined in Equation (6.5) are estimated based
on discretized values of the temporal difference signal of the observed fluorescence.
To cope with potential under–sampling artifacts —since the probability distributions
to estimate have an elevated dimensionality, as large as 2k+1— we symbolize the
signals into a binary sequence by applying a sharp threshold. The optimal threshold
value x̂ for this conversion is obtained from the following analysis.

We first ignore the exponential decay of the fluorescence signal since it has a small
influence on discretely differentiated signals, and assume a sufficiently low firing
rate so that the occurrence of more than one spike per frame of a given neuron is
negligible. Under these simplification hypotheses, the probability distribution of
the signal can be cast as a combination of Gaussian functions, with mean values
given by the offset associated to the number of action potentials encountered in the
current time bin. Additionally, to preserve information about spiking events when
projecting the time-series into a binary representation, we compute the optimal
mapping by determining the probability P that the mapping is correct at any given
time step (provided the parameters of the model ϑ and a threshold value x), i.e.,

P(correct mapping |ϑ) = P(xt ≥ x,st = 1|ϑ)+P(xt < x,st = 0|ϑ),

where st ∈ {0,1} denotes the occurrence of a firing event at time frame t, and ϑ

refers to unspecified but frozen parameters of the analyzed system, which have a
potential influence on the estimated probability. In particular, the probability that a
neuron fires at a given image frame is a function of the firing rate and the length
of the image frame, psp = fsp τimage. For a normally distributed camera noise with
standard deviation σnoise and an expected variation ∆x in fluorescence due to a
single spike, a straightforward solution for the optimal separation value x̂ that yields
the maximum of the correct mapping probability can be derived,

x̂ =
1
2

∆x+
σ2

noise
∆x

log

(
1− psp

psp

)
. (6.15)

GTE scores are robust against the selection of a separation value above the optimal x̂.
Indeed, for x > x̂ the total number of samples above the separating value is reduced,
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but the fraction of samples that correspond to real spikes is actually increased. The
resulting network reconstructions do not show any notable decrease of quality for
values of x up to a 30% above the optimal value.

This optimal binning procedure is a fast and straightforward way to do spike
inference. More advanced methods of spike inference exist, and might also be
used if additional information about the system is known, e.g., [Vogelstein 2009,
Mishchenko 2011b].

6.2.5 Network reconstruction

In order to reconstruct a whole network, GTE is computed for each directed pair
of neurons i, j from Equation (6.5), resulting in a matrix M of directed causal
influences where M ji = GT EJ→I . A new binary matrix T (z) is created from the
GTE scores, where Tji = 1 if M ji is amongst the fraction z of links with the highest
GTE score (thresholding).

The quality of the reconstruction is quantified through a Receiver Operating Charac-
teristic (ROC) analysis. The ROC is a parametric curve that establishes a relationship
between the true and the false positive links found in T (x) for the different thresh-
olded levels. If A denotes the binary connectivity matrix of the real network, then
the true positive ratio (TPR) is defined as the number of links in T that are present
in A respect to the total number of existing links. The false positive ratio (FPR) is
the fraction of links in T that do not match original links, i.e.,

TPR(z) =∑
∀i, j

Tji(z)A ji

/
∑
∀i, j

A ji, (6.16)

FPR(z) =∑
∀i, j
i 6= j

Tji(z)Â ji

/
∑
∀i, j
i6= j

Â ji, (6.17)

where Â is the negation of the binary connectivity matrix A (0 ↔ 1). Thus
TPR(z) and FPR(z) constitute, respectively, finite-size estimates of the probabilities
P(reconstruction = 1| true = 1,z) and P(reconstruction = 1| true = 0,z), for any
given link across the network. Confidence intervals for ROC curves are estimated
based on 5 different network realizations.
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6.3 Dynamics of biological and simulated networks

Dissociated neurons grown in vitro self-organize and connect to one another, giving
rise to a spontaneously active neuronal network within a week (see Figure 6.1a)
[Eckmann 2007, Soriano 2008, Chiappalone 2006, Cohen 2008]. About 70–80%
of the grown connections are excitatory, while the remaining 20–30% are inhibitory
[Soriano 2008]. Activity in neuronal cultures is characterized by a bursting dy-
namics, where the whole network is active and displays quasi-synchronous, high
frequency firing within 100–200 ms windows [Cohen 2008]. The timing of the
bursts themselves is irregular, with average inter-burst intervals on the order of 10 s
in a typical preparation. Between different bursts, firing across the network has a
low-frequency and can be described as asynchronous.

Neuronal dynamics in cultures may be monitored using calcium fluorescence imag-
ing [Eckmann 2007, Grienberger 2012], which enables the recording of the activity
of thousands of individual neurons simultaneously. Figure 6.1a shows example
traces illustrating the characteristic fluorescence signal of individual neurons in
vitro. The fluorescence signal is characterized by a fast onset as a result of neuronal
activation and the binding of Ca2+ ions to the fluorescence probe, followed by a
slow decay back to the baseline due to the slow unbinding rate. This behavior is
apparent in the population average of the signal, as shown in Figure 6.1b, where
bursts are clearly identified by the fast rise of the fluorescence signal.

To appraise the role of inhibition on dynamics, we monitor neuronal network activity
in two different conditions: A first one, with only excitatory connections active,
where inhibitory connections have been completely blocked (denoted as “E–only”
networks); and a second one, where both excitatory and inhibitory connections
are functionally active (herein after denoted as “E+I” networks). In experiments,
inhibitory synapses are silenced through the application of saturating levels of
bicuculline, a GABAA receptor antagonist (see Methods). An example trace of the
population average signal of such an excitatory-only system is shown in the top
left panel of Figure 6.1b, whereas the dynamic behavior in presence of inhibition is
shown in the bottom left panel of Figure 6.1b. In the “E–only” condition, bursts are
more pronounced and more regular in amplitude than in the “E+I” condition, an
effect also seen in other studies [Cohen 2008, Jacobi 2009, Tibau 2013].

These recordings in neuronal cultures provide a comparison reference for our sim-
ulated networks of model neurons. We build a computational model of a culture
whose dynamics capture its major qualitative features. These include a high variabil-
ity in the inter-burst intervals, a low∼ 0.1 Hz inter-burst firing rate, and, in presence
of inhibition, an increase in bursting frequency as well as a general decay in the
amplitudes of the fluorescence signal, paired by an increase in their heterogeneity.
More specifically, we consider networks with N = 100 leaky integrate-and-fire
nodes with depressive synapses in combination with a model for the calcium fluo-
rescence. Network connectivity is random and sparse, with links rewired in order
to reach an above-chance level of clustering. Each node receives inputs from its
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Figure 6.1 Neuronal network dynamics. a, Top: Bright field and fluorescence images of a
small region of a neuronal culture at day in vitro 12. Bright spots correspond to firing neurons.
Bottom: Representative time traces of recorded fluorescence signals of 3 individual neurons. The
numbers beside each trace identify the neurons on the images. Data shows, for the same neurons,
the signal in recordings with only excitation active (“E”) and the signal with both excitation and
inhibition active (“E+I”). b, Population-averaged fluorescence signals in experiments (left) and
simulations (right), illustrating the semi-quantitative matching between in vitro and in silico data.
Top: excitatory-only traces (“E–only” data). For the experiments, inhibition was silenced through
application of saturating concentrations of bicuculline. For the simulations, inhibitory synapses
were silenced by setting their efficacy to zero. Bottom: traces for both excitation and inhibition
active (“E+I” data). Network bursts appear as a fast increase of the fluorescence signal followed by
a slow decay. Bursts are more frequent and display lower and more heterogeneous amplitudes in
the presence of inhibitory connections. c, Histogram of population-averaged fluorescence intensity
for a 1 h recordings in experiments (left) and simulations (right). Data is shown in semilogarithmic
scale for clarity. Red curves correspond to the “E–only” condition, and the blue curves to the “E+I”
one.
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pre-synaptic neighbors as well as from independent external sources to mimic
spontaneous single neuron activity due to noise fluctuations in the ionic current
through its membrane. Free model parameters, such as the homogeneous conduc-
tance weights of recurrent connections, were calibrated such as to yield dynamics
comparable to the biological recordings, with a bursting rate of 0.1Hz and realistic
decay time constants of the calcium fluorescence (see the bottom right panels of
Figure 6.1b). The blocking of inhibitory connections (top right panel of Figure 6.1b)
is simulated by setting the synaptic weight of all inhibitory connections to zero
(note, therefore, that the firing itself of inhibitory neurons is not suppressed, but just
its postsynaptic effects).

As discussed more in depth in [Stetter 2012], a hallmark of bursting dynamics is the
right-skewed histogram of the population average of the calcium fluorescence signal
(see Figure 6.1c). Low fluorescence amplitudes are associated to the non-bursting
regime, which is noise dominated, and the right tail of the distribution reflects burst-
ing events. The range spanned by this right tail is distinctly shortened in presence
of inhibition. This difference in the large fluorescence amplitude distribution can
be ascribed to the dynamics at the synapse level: For purely excitatory networks,
the neurotransmitters resources of a given synapse are depleted during a bursting
event [Cohen 2011]. Neurons experience high frequency discharge, but require a
longer time to recover, giving rise to long inter-burst intervals. Inhibition lowers
this release of neurotransmitters by suppressing neuronal firing before complete
depletion, therefore providing a faster recovery, shorter inter-burst periods and
lower firing activity inside the bursts.

6.4 Connectivity reconstruction from directed functional links

Based on simulations of the calcium dynamics in the network, a network of (di-
rected) functional connectivity is reconstructed by computing the Generalized
Transfer Entropy (GTE) for each (directed) pair of links. GTE is an extension of
Transfer Entropy, a measure that quantifies predictive information flow between
stationary systems evolving in time [Schreiber 2000]. As an information theoretical
implementation of the Granger Causality concept [Granger 1969], a positive TE
score assigned to a directed link from a neuron i to a neuron j indicates that the
future fluorescence of j can be better predicted when considering as well the past
fluorescence of i in addition to the past of j itself.
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6.4.1 Conditioning as state selection

A central observation that motivated the definition of GTE was the existence of
different dynamical states in the switching behavior from asynchronous firing to
synchronous bursting activity. The distribution of fluorescence amplitudes (see
Figure 6.1c) provides a visual guide to the relative weight of the single activity
events and the bursting episodes. A functional reconstruction in this bursting regime
shows a very clustered connectivity due to the tightly synchronized firing of large
communities of neurons. We can understand intuitively this finding, by considering
that, in the bursting regime, the network is over-excitable and the firing of a single
neuron can trigger the firing of a large number of other neurons not necessarily
linked to it by a direct synaptic link. On the other hand, the neuronal activity in the
non-bursting regime is sparse and dominated by pairwise interactions, and thus, a
reconstruction in this regime identifies directed functional interactions that more
closely match the structural connectivity, i.e., high GTE might signal direct pre-
to post-synaptic coupling in this regime, as previously discussed thoroughly for
“E–only” networks [Stetter 2012].

A rough segmentation of the population signal into time sequences of bursting
and non-bursting events is simply achieved by defining a fixed conditioning level
on the population average fluorescence. This simple modification with respect to
the original TE formulation, makes GTE suitable for an analysis of functional
interactions which distinguish different dynamical regimes, as illustrated for purely
excitatory networks in the left panel of Figure 6.2a. The network is indeed consid-
ered to be in a bursting regime when the network-averaged fluorescence exceeds
the chosen conditioning level (dotted line in Figure 6.2a), and in an inter-burst
regime otherwise. The value of the conditioning level itself is obtained through
the analysis of the fluorescence signal histogram and set close to the transition
from the Gaussian-like profile shown for low fluorescence values to the long tail
characteristic of the population bursts.

Note that, while our approach works by restricting the analysis to epochs of inter-
burst activity only, other complementary methods exploit detailed information about
typical burst build-up sequences in order to infer structure, with potentially superior
results when the required time resolution is accessible [Pajevic 2009].

6.4.2 Connectivity reconstruction of simulated “E–only” networks

Reconstruction performances from the GTE computation are quantified in the form
of receiver operating characteristic (ROC) curves (see section 6.2.5). ROC curves
show the fraction of true positives, i.e., inferred connections which really exist, as a
function of the fraction of false positives, i.e., wrongly inferred connections.
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Figure 6.2 Signal conditioning. a, Separation of the signal in two regimes according to the
conditioning level (dotted line), a first one that encompasses the low activity events (red curves),
and a second one that includes the bursting regimes only (blue). The same conditioning procedure
is applied in both “E–only” networks (left) and in “E+I” ones (right). b, Receiver Operating Char-
acteristic (ROC) curves quantify the accuracy of reconstruction and its sensitivity on conditioning.
Functional networks are generated by including links with a calculated GTE score exceeding an
arbitrary threshold. ROC curves plot then the fraction of true and false positives in the functional
networks inferred for every possible threshold. For “E–only” networks (left) and “E+I” networks
(right), the red curves show the goodness of the reconstruction after applying the conditioning
procedure. Blue curves illustrate the reconstruction performance without conditioning. The ROC
curves show that the conditioning procedure significantly improves reconstruction performance.
ROC curves were averaged over different network realizations (95% confidence intervals shown).

The ROC curves of the reconstruction performance, with and without condition-
ing, for the case of simulated “E–only” networks are shown in the left panel of
Figure 6.2b. Without conditioning (blue ROC curves), the reconstruction quality of
excitatory connections — to both excitatory and inhibitory neurons confounded —
is significantly better than a random choice (which would correspond to a diagonal
line in the ROC curve). The reconstruction is, however, hindered by the fact that
the analysis effectively averages over data from multiple dynamical regimes as
described above. The reconstruction performance thus significantly increases by
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applying a conditioning (red ROC curves) which selects uniquely the inter-burst
regime.

It was also shown for simulations comparable to the ones presented here, that
the reconstructed networks using GTE are approximately unbiased regarding bulk
network properties, such as the mean clustering coefficient, or the average length of
connections in the network [Stetter 2012].

6.4.3 Connectivity reconstruction of simulated “E+I” networks

An important aspect of Transfer Entropy, and by extension of GTE, is its model-
free nature. Thus, during the process of identifying causal influences between
neurons, there is no need to define a generative model for neuronal firing or calcium
dynamics, as in the case of Bayesian inference approaches [Mishchenko 2011b]. It
follows that we can apply GTE without modifications to the case in which both
excitatory and inhibitory links are active, provided that the inter-burst network state
can be identified in an analogous way. Indeed we observe that while the presence
of inhibition does change the dynamics of the system to some extent, the bursting
behavior remains robustly present (see the right panel of Figure 6.2a), allowing the
straightforward identification of a performing conditioning level.

Remarkably, the reconstruction performance of “E+I” networks remains at high
levels after conditioning, of about 80% true positives at 10% false positives, as
shown in the right panel of Figure 6.2b. Thus the model-independence of GTE
allows the reconstruction of both excitatory and inhibitory links. As a further self-
consistency check, we have simulated the dynamics of a neuronal culture with a
topology identical to the inferred one and compared it with the dynamics of the
network with the original ground-truth topology. The resulting bursting and firing
rates, for both the “E-only” and the “E+I” cases, are not statistically significantly
different from the case of perfect reconstruction, while they markedly differ from the
case of a randomized topology (not shown). Nevertheless, given the phenomenon
of structural degeneracy, a large number of even very different structural circuits
could give rise to equivalent dynamical regimes [Stetter 2012]. Therefore, passing
this self-consistency check is not a sufficient condition to prove high reconstruction
quality, though it is a necessary one.

Note, finally, that we have disregarded, until now, the identification of the specific
type, i.e. excitatory or inhibitory, of each link, focusing uniquely on whether a link
is present or absent in the ground-truth structural network, whatever is its nature.
As previously mentioned, correctly labeling a link turns out to be a more elaborated
task than just inferring its existence.
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6.5 Differentiation of excitatory and inhibitory connections

GTE probes the existence of unspecified influences between signals, but cannot
identify the type of occurring interaction a priori. Its versatility also means that very
different types of interactions can give the same GTE score if their influence in terms
of predictability is the same. Hence, to separate between excitatory and inhibitory
connections we have to either introduce ad hoc information on neuronal types or
combine different reconstructions together to single out the different connectivity
types.

Such ad hoc information might come from dye impregnation, fluorescence labeling
or immunostaining [Lichtman 2008]. These techniques identify cell bodies and
processes according to some specific traits, for instance membrane proteins or
neurotransmitters’ receptors. According to Dale’s principle [Kandel 1967], a neuron
shows the same distribution of neurotransmitters along its presynaptic terminals.
Hence, if a neuron is labeled as either excitatory or inhibitory, we can assume
that all its output connections are of the same matching type. Thus by combining
the type of information provided by some extrinsic labeling technique with the
unspecific causal information provided by GTE, the overall set of inferred links can
be separated into two non–overlapping subsets of excitatory and inhibitory links.

Being able to identify the type of a neuron — even with perfect accuracy — does
not guarantee a priori that excitatory and inhibitory links can be inferred equally
well. On the contrary, different reconstruction performances have to be expected
in general, since the interaction mechanism of excitatory links is inherently dif-
ferent from the inhibitory ones, the former promoting the activity of the target
neuron, whereas the latter restrain it. We have tested the accuracy of this ad hoc
approach through numerical simulations. GTE is applied to the “E+I” data, and the
reconstruction quality is assessed separately for the connections originating from
neurons of different types (see Methods). Non trivially, the results of this analysis
indicate that both types of connections are reconstructed with high accuracy (see
Figure 6.3a). At a fraction of 10% of false positives, excitatory links are detected at
a true positive rate of 80%. Inhibitory links show a lesser but still high detection
accuracy, of about 60% of true positives.

6.6 Reconstruction and labeling from spontaneous dynamics

In the absence of information on neuronal types, an alternative approach consists
in a direct combination of the reconstructions procured by the “E–only” and “E+I”
data on the same neurons. By adding together the GTE scores from the two re-
constructions we can assume that the higher scores come from links that show a
high score in both reconstructions. This procedure is thus expected to highlight the
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pool of excitatory connections, since they are the only ones present in both network
conditions. Similarly, we can subtract the “E–only” scores from the “E+I” ones.
High scores will then now highlight those links that are present in the “E+I” but not
in the “E–only” network, i.e. the pool of inhibitory connections.

The performance of this first two-step reconstruction approach is shown in Fig-
ure 6.3b. The reconstruction of excitatory connections has a quality as good as
the one obtained with a priori knowledge of neuronal type based on extrinsic
labeling (see Figure 6.3a). However, the performance markedly deteriorates for the
reconstruction of inhibitory links, since only 40% of the inhibitory connections are
correctly identified at 10% of false positives.
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Figure 6.3 Optimal network reconstruction. a, ROC curves for the reconstruction of a network
with both excitatory and inhibitory connections active, supposing to know a priori information
about neuronal type. GTE is first applied to the “E+I” data. Next, following Dale’s principle
and exploiting the available information on neuronal type, links are classified according to their
excitatory (red) or inhibitory (blue) nature. b, ROC curves for the best possible identification
of excitatory and inhibitory connections, when information on neuronal type is unaccessible.
Excitatory links (red) are identified by adding together the Transfer Entropy scores of simulations
run in “E–only” and “E+I” conditions, and later thresholding them. Inhibitory links (blue) are
identified by computing the difference in Transfer Entropy scores between the runs with inhibition
present and blocked. Inset: fraction of excitatory and inhibitory neurons correctly identified from
these ROC curves. Results were not significantly different from random guess (see Methods). All
the results were averaged over different network realizations. The shaded areas in the main plots,
as well as the error bars in the inset, correspond to 95% confidence intervals.

Note that an additional complication arises with the described two-steps pipeline.
A given link might be attributed a combined score above the inclusion threshold,
both when considering the sum and the difference of original GTE scores. In this
case, the link would be labeled as “both excitatory and inhibitory”, a fact which is
excluded by Dale’s principle. Despite this problem, we might still try to combine
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the “E–only” and “E+I” reconstructions to infer the nature of each neuron. To
test the accuracy of such identification we try to label neurons as excitatory or
inhibitory based on a highly “pure” structural network reconstruction. To do so,
we select a very high GTE threshold for link, in such a way that in the inferred
subnetwork —including, correspondingly, very few links only— the fraction of
false positives remains small (with a maximally tolerable ratio of 5%). We first
sum and subtract “E–only” and “E+I” scores to obtain putative excitatory and
inhibitory links, as just discussed. We next compute the output degrees of the
neurons for each subnetwork, kE and kI , respectively. Finally, we rank each neuron
according to the difference kE − kI . Following Dale’s principle, the set of neurons
with the highest (positive) ranking would be labeled as excitatory, and those with
the lowest (negative) ranking as inhibitory. The results, however, as shown in the
inset of Figure 6.3b, indicate that this approach does not provide better results than
a random guessing of neuronal type (see Methods for details on significance testing)
and a different approach is required.

6.7 Reconstruction and labeling from stimulated dynamics

As a matter of fact, the major challenge for an accurate reconstruction and precise
labeling of neuronal types is the identification of inhibitory links, and this for the
following reason. To estimate GTE, we need to evaluate the probability of each
given neuron to be active in a short time window of a duration ∆ t = (k+1) τimage,
where k = 2 is the order of an assumed Markov approximation (see Methods) and
τimage = 20ms is the image acquisition interval. With these parameter choices, we
obtain then ∆ t = 60ms. Neurons in a culture spike with an average inter-burst
frequency of ν ∼ 0.1Hz, resulting in a low firing probability within each time bin.
Continuing this reasoning, the probability that two unconnected neurons spike at
random in the same time window is given by (ν ∆ t)2 ∼ 4 ·10−5. The number of
coinciding events Nevents expected in a recording is thus:

Nevents ∼ Nsamples (ν ∆ t)2, (6.18)

where Nsamples is the number of independent samples in a recording. In a typical
recording session lasting ∼ 1h, one gets Nsamples ∼ 1.8 ·105 independent samples
and therefore Nevents ∼ 6. Hence, one can expect to observe, on average, just six
concurrent spikes between any pair of unconnected neurons. If an excitatory link
exists between two neurons, the conditional probability of firing rises above this
random level and more coincidence events are observed, turning into an appreciable
contribution to the GTE calculation. However, if an inhibitory link is present, the
number of simultaneous spikes gets further reduced with respect to the already
very small chance level, making any accurate statistical assessment very difficult.
Nevertheless, we note that the number of detected events scales as ν2 with the
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frequency of firing, and even a slight increase in spiking frequency would enhance
considerably the reconstruction performance.

A promising approach to increase neuronal firing consists in forcing the neuronal
network through external stimulation. Several studies on neuronal cultures have
used external drives, typically in the form of electrical stimulation, to act on neu-
ronal network activity, for instance to investigate connectivity traits [Breskin 2006,
Soriano 2008], modify or control activity patterns [Wagenaar 2005, van Pelt 2005],
or explore network plasticity [Madhavan 2006, Wagenaar 2006a]. Such in vitro ap-
proaches are reminiscent of in vivo clinically relevant techniques such as deep
brain stimulation, used in the treatment of epilepsy and movement disorders
[McIntyre 2004, Durand 2001].

External stimulation in neuronal cultures has been employed to increase neu-
ronal firing [van Pelt 2005] as well as to reduce network bursting [Wagenaar 2005,
Madhavan 2006]. Factors that, in the GTE reconstruction context, improve the
accuracy in the identification of the network architecture. To explore potential im-
provements in reconstruction, we simulate the effect of an applied external drive in a
purely phenomenological way by increasing the frequency parameter of the Poisson
process that drives spontaneous activity. This additional drive never increases the
spontaneous firing frequency beyond 3 Hz, being meant to represent the effects
of a rather weak external stimulation. Due to this contained increase of firing rate,
the collective bursting activity of the simulated network continues to be shaped
dominantly by network interactions, rather than by the drive itself.

The performance of our GTE algorithm combined with a weak network stimulation
is illustrated in Figure 6.4a, where we show the fraction of true positives in the
reconstruction of “E–only” networks at 5% false positives. The presence of even
very small external drives substantially enhances reconstruction based on GTE.
For higher drives, reconstruction performance reaches a plateau that quantifies the
range of optimum stimulation. Performance later decays due to the excess of stim-
ulation, which substantially perturbs spontaneous activity and alters qualitatively
the global network dynamics. We incidentally remark that the incorporation of the
external drive makes unnecessary — actually, even deleterious — the instantaneous
feedback term correction (IFT, see Methods), i.e., an ad hoc modification to the
original formulation of TE which was introduced in [Stetter 2012] to cope with
the poor frame rate of calcium fluorescence recordings, definitely slower than the
time-scale of monosynaptic interaction delays. The IFT correction allows to en-
compass interactions occurring in the same temporal bin of the recording for TE
estimation, a feature useful to enhance reconstruction results when the time-scale
of pre-postsynaptic neuron interactions is fast relative to the time resolution of
the recording. However, same–bin interactions also result in an overestimation of
bidirectional connections, since one cannot establish directionality within a single
time bin. When the firing rate is enhanced with respect to spontaneous conditions
these negative effects of the IFT corrections become predominant.
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Figure 6.4 Reconstruction improvement through external stimulation. a,b,, fraction of true
positives from the reconstructions at the 5% false positive mark for the studied networks. “E–only”
networks are shown in a,; “E+I” networks in b,. Inset: dependence of the spontaneous firing rate
on the applied external drive, emulated here by increasing the rate of the background drive to the
culture in silico. All the excitatory reconstructions reach a stable plateau in the reconstruction
after removal of the instantaneous feedback term (IFT) correction (see Methods). The inhibitory
reconstruction is accurate only for higher values of the external drive. c, ROC curves extracted
from a,b, with an external stimulation of 4 Hz. Inset: fraction of excitatory and inhibitory neurons
correctly identified from these reconstructions. Identification was statistically significant compared
to random guessing. For excitatory neurons, p < 0.01 (**); for inhibitory neurons, p < 10−4 (***).
d, Example of an actual reconstruction after identification of neuronal type.Identified excitatory
neurons are shown in red and inhibitory ones in blue. Incorrectly identified neurons are shown in
gray. Correctly identified excitatory and inhibitory links are shown in red and blue, respectively,
and wrongly identified links are shown in black. For clarity in the representation of the links, a
threshold value lower than the optimal has been applied.
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The same reconstruction analysis for “E+I” networks is shown in Figure 6.4b, for
excitatory and inhibitory links separately. The identification of excitatory links
greatly improves with moderate drives and, again, IFT becomes unnecessary. For
inhibitory links, performance is optimum at low drives, when IFT is used. Without
IFT, however, performance is better at relatively high drives, and one can observe
the existence of an optimal stimulation range (leading to a firing rate of ∼ 5Hz) that
maximizes inhibition reconstruction while preserving a relatively good excitatory
identification.

We note as well that, for “E+I” networks, bursts disappear in general at higher
values of the external drive. In general, as depicted in the inset of Figure 6.4a, the
dependence of the spontaneous firing frequency on the external drive is quantita-
tively different from “E–only” networks, requiring typically a stronger drive to
achieve a comparable firing rate.

With the external drive the overall ROC curves are also improved. In Figure 6.4c
we show the reconstruction performance for medium values of stimulation. In this
new regime, we can again try to determine the neuronal type based on the labeling
procedure used in the previous section (inset of Figure 6.4c). Now excitatory neu-
rons are correctly identified with 90% accuracy, whereas the fraction of inhibitory
neurons correctly identified rises conspicuously to 60%. This marked improvement
is now statistically significant (see Methods).

In Figure 6.4d we show an actual reconstruction of a portion of the original net-
work with this procedure. Correctly inferred excitatory and inhibitory neurons are
shown in red and blue respectively, and mismatches in yellow. Correctly identified
excitatory and inhibitory links are also shown in red and blue respectively, and false
positives are shown in black. It is visually evident that for this thresholding level a
very high purity is achieved, and only a small fraction of the reconstructed links are
false positives.

We conclude that the addition of a weak external stimulation to the “bare” network
dynamics results in an overall improvement on the reconstruction of both excitatory
and inhibitory links. Moreover, by combining the reconstructions of “E–only” and
“E+I” networks, we also become able to infer the neuronal type by just analyzing
the dynamics, with no a priori knowledge of the system and without resorting to
extrinsic information of any sort.

6.8 Discussions and outlook

A systematic extrinsic labeling of neuronal types might be difficult to achieve
in large culture experiments. When a priori information is unavailable, our re-
sults show that the combination of the reconstructions for “E–only” and “E+I”
spontaneous activity data fails at identifying robustly the inhibitory interactions.
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Nevertheless, we find that the reconstruction performance of excitatory links re-
mains almost unchanged when inhibition is present, despite the fact that inhibition
may substantially alter excitatory interactions, and in turn network dynamics, for
instance through feedback and feedforward inhibitory loops. The observation that
excitatory links are still correctly reconstructed in “E+I” data shows the robustness
of the algorithm to the presence of different interactions in the system. We remark
that the main factor determining the poor identification of inhibitory links is the
weak firing rate during inter-burst epochs. Since, in a nearly asynchronous regime
of inter-burst firing, the action of a direct inhibitory link manifests itself by reducing
below the already small chance level the probability of firing coincidence between
the two connected neurons, the recording of a larger amount of inhibitory firing
would be required to improve the reconstruction of inhibitory couplings. Although
the recording duration can be increased at will in numeric simulations, this is not
the case for real experimental recordings, to which our algorithm aims at being
applied.

In our simulations, we naturally achieved to increase single neuronal firing activity,
and therefore reconstruction statistics through a weak external stimulation of the
network, with neither a significant disturbance in neuronal network dynamics nor
the need for substantially longer recordings. In many previous works resorting to ex-
ternal drives to stimulate network activity, both experimental and theoretical, the ap-
plied stimulation was supra-threshold, i.e. the stimulation triggered directly neuronal
firing [Breskin 2006, Soriano 2008, Jacobi 2009, Cohen 2010, Linaro 2011]. Our
approach raises instead network excitability by a weak external drive that effectively
increases activity without modifying the network intrinsic behavior, in the direction
of other experimental studies that stimulated multiple sites of a neuronal culture via
a multi-electrodes array, to either increase network firing, reduce the occurrence
of bursting episodes, or investigate plasticity [van Pelt 2005, Wagenaar 2006a]. In-
terestingly, these works observed that a weak stimulation along few hours did
not induce plastic effects, i.e. did not change network behavior, thus making our
reconstruction strategy of immediate applicability in experimental recordings.

In the present work we have exhibited experimental data only for qualitative compar-
ison with fluorescence traces obtained from the numerical model. The experimental
data could be analyzed in principle without need of any modification to the GTE
formulation, but we found our present knowledge of the experimental recordings
insufficient to get reliable reconstructions. In particular, we are lacking good esti-
mates of the neuronal firing rate during the inter-burst periods, as well as the amount
of fluorescence change caused by an action potential. The former does not allow to
determine whether we expect enough events to make the reconstruction of inhibitory
links feasible (see Equation (6.18)), while the latter prevents the application of
an optimal data discretization strategy that would reduce the minimal recording
length needed for accurate results. Our study intends therefore to foster the future
application of the workaround strategies here explored in experiments in silico, i.e.,
most notably: (i) a weak external stimulation to increase spontaneous activity; and
(ii) the extrinsic labeling of excitatory and inhibitory neuronal cell bodies after the
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recording (to provide at least a partial source of a priori information) to be used in
synergy with our algorithmic approach.

Finally, our reconstruction algorithm has the potential to be immediately applied to
the analysis of fluorescence data in experimental recordings that are not affected
by the aforementioned limitations. In particular, in vivo recordings and brain slice
measurements [Mao 2001, Brustein 2003, Dombeck 2007] display a much richer
activity at the individual neuron level than in the in vitro counterparts. Recent works
have highlighted the ability of high speed multi-neuron calcium imaging to access
neuronal circuits in vivo [Stosiek 2003, Kerr 2008, Grewe 2010]. Our methodology
can thus be directly applied to these data, particularly in those investigations that
target the role of inhibition [Bonifazi 2009, Marissal 2012], although systematic
verification of the inferred connectivity (in absence of a known ground-truth struc-
ture) remains currently out of reach and validation is only possible at the statistical
level.

6.9 Conclusions

Living neuronal networks contain both excitatory and inhibitory neurons. Although
the interplay between excitation and inhibition gives rise to the rich dynamical traits
and operational modes of brain circuits, inhibition is often neglected when analyz-
ing functional characteristics of neuronal circuits, mostly because of its difficult
identification and treatment. In this work we have made a first step towards filling
this gap, and introduced a new algorithmic approach to infer inhibitory synaptic in-
teractions from multivariate activity time-series. In the framework of a realistically
simulated neuronal network that mimics in a semi-quantitative way key features
of the behavior of neuronal cultures, we applied Generalized Transfer Entropy
(and Dale’s principle) to identify excitatory as well as inhibitory connections and
neurons.

In a previous work [Stetter 2012], the GTE framework was developed and applied
to extract topological information from the dynamics of purely excitatory networks,
but left as an open question the treatment of inhibition. Here we have shown that
GTE has the potential to be applied without substantial modifications to recordings
relative to cultures with active inhibition (“E+I” cultures). This data is characterized
by an irregular bursting dynamics with overall lower — but distinctly fluctuating —
fluorescence amplitudes as well as higher bursting frequencies than purely excitatory
(“E–only”) signals. In general, GTE provided an overall good reconstruction of
the “E+I” simulated data, hinting at the robustness and general applicability of
the algorithm. This is a highly non trivial achievement of the algorithm, given the
profoundly different functional profile of inhibitory actions. The GTE reconstruction
alone performed well in identifying the existence of links between pairs of neurons,
however, it was not sufficient to resolve their excitatory or inhibitory nature. Yet,
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we provided evidence through numerical experiments that this additional goal could
be fulfilled by retrieving a priori information about the types of different neurons
(e.g. through immunostaining or selective fluorescent dyes), or by combining the
reconstructions obtained from both “E+I” and “E–only” recordings from a same
network (thus, again relying uniquely on time-series analysis).

When a priori information about the type of each neuron is available, Dale’s princi-
ple proves to be, at least in our simulations, a solid yet simple approach that allows
the identification of the major connectivity traits of the neuronal network. However,
when applying Dale’s principle to actual, living neuronal networks recordings (see
later), one has to consider its possible limitations, like the existence of (rare) ex-
ceptions to it [Jonas 1998]. We also remark that, in a more realistic context, other
types of a priori information beyond the nature of the neurons and their processes
could be considered, like, e.g. information about their spatial distribution.

6.10 Acknowledgments

The work presented in this chapter has been done in collaboration with D. Battaglia,
O. Stetter, T. Geisel and J. Soriano. In particular, O. Stetter first developed the GTE
formulation and J. Soriano performed the experiments.



159

Appendix

6.A Experimental Methods

All procedures were approved by the Ethical Committee for Animal Experimenta-
tion of the University of Barcelona, under order DMAH-5461.

Experimental traces of fluorescence calcium signals were obtained from rat cortical
cultures at day in vitro 12, following the procedures described in [Stetter 2012]
and in other studies [Segal 1992, Soriano 2008, Orlandi 2013]. Briefly, rat cortical
neurons from 18–19-day-old Sprague-Dawley embryos were dissected, dissociated
and cultured on glass coverslips previously coated with poly–l–lysine. Cultures were
incubated at 37◦C, 95% humidity, and 5% CO2. Each culture gave rise to a highly
connected network within days that contained on the order of 500 neurons/mm2.
Sustained spontaneous bursting activity appeared by day in vitro 6− 7. Prior to
imaging, cultures were incubated for 40 min in recording medium containing the
cell–permeant calcium sensitive dye Fluo-4-AM. The culture was washed with fresh
medium after incubation and finally placed in a recording chamber for observation.
The recording chamber was mounted on a Zeiss inverted microscope equipped with
a Hamamatsu Orca Flash 2.8 CMOS camera. Fluorescence images were acquired
with a speed of 50 frames per second and a spatial resolution of 3.4 µm/pixel.

In a typical measurement, spontaneous activity was first recorded as a long image
sequence 60 min long. Both excitatory and inhibitory synapses were active in this
first measurement (“E+I” network). Next, inhibitory synapses were fully blocked
with 40 µM bicuculline, a GABAA antagonist, so that activity was solely driven
by excitatory neurons (“E–only” network). Activity was next measured again for
another 60 min. At the end of the measurements, images were analyzed to to retrieve
the evolution of the fluorescence signal for each neuron as a function of time.

Note once again that, in this study, experimental fluorescence traces were used
only as a guiding reference for the design of synthetic data in “E–only” and “E+I”
conditions, and were not analyzed to provide network reconstructions, given the
limitations of current experimental protocols, highlighted in Section 6.8.
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6.B Numerical recipes

6.B.1 Combining two reconstruction results

To distinguish between excitatory and inhibitory neurons, we combined the infor-
mation of the reconstructions obtained from the “E+I” and “E–only” data, namely
ME+I and MEonly. We assumed that excitatory links are present in both datasets,
while inhibitory ones appear only in the “E+I” reconstruction, and proceeded by
defining new matrices of putative excitatory Mexc and putative inhibitory influ-
ences Minh, of the form:

Mexc = ME+I +MEonly, (6.19)

Minh = ME+I−MEonly. (6.20)

To obtain the effective connectivity reconstruction only the rank ordering of GTE
values is relevant. Therefore no rescaling of these matrices is necessary, and the
final set of links could be obtained by thresholding the matrices as described above.

To label the neurons as either excitatory or inhibitory, we first removed all links
that were present in both reconstructions, and then ranked the neurons according to
the difference between excitatory and inhibitory links, li = ∑ j T exc

ji −∑ j T inh
ji . We

next used the prior information that a fraction fE = 80% of the neuronal population
is excitatory, therefore identifying as excitatory neurons the fE fraction with the
highest li score, and labeling the rest as inhibitory.

6.B.2 Statistical tests

Statistical significance on the inference of excitatory and inhibitory neuronal types
was performed as follows. Assuming that the fraction of excitatory and inhibitory
neurons ( fE and fI respectively) is known with good precision in a population of N
cells, the probability to correctly identify by chance a given set of neurons nE and
nI in a given trial X follows a binomial distribution:

P(X = n) =
(

N fx

n

)
f n
x (1− fx)

N fx−n. (6.21)

Let suppose that a labeling method provides a fraction nguess of correctly labeled
links. We considered this labeling result as statistically significant if the probability
of outperforming by chance this success rate was P(X ≥ nguess)< p, with a standard
choice of p = 0.05.
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7
General conclusions and perspectives

The main purpose of this thesis has been to untangle the complex interplay between
noise, coherent activity and network structure in neuronal cultures, with focus
on dynamics. To fully understand and characterize this interplay we modeled
and characterized the spontaneous activity of neuronal cultures at different scales,
from the microscopic structure of the single–neuron dynamics and the associated
macroscopic observables, to a mesoscale description as an excitable medium with
nontrivial fluctuations.

The work presented here comprises a full picture in the study of spontaneous activity
in neuronal cultures. We start by showing how patterns of coherent activity emerge
spontaneously due to a highly heterogeneous mechanism of noise propagation and
amplification in a metric network called noise focusing, and circle back to show a
reliable method to characterize the properties of the network structure based on the
observed dynamics.

7.1 Summary of results and conclusions

Chapter 2 contains the most salient results of this thesis. We develop an accurate
model of the network structure and the dynamics of neuronal cultures in their
early stages of development and show that their collective spontaneous activity is
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dominated by activity bursts which take the form of propagating fronts that nucleate
at specific sites of the system, i.e., nucleation sites.

We show that the underlying neuronal activity in the system is characterized by
avalanches of activity that originate in the spontaneous noise and propagate through
the system. The activity in the avalanches is amplified due to the clustered topology
of the network (inherited from its metric structure) and the non–linear behavior
of the neuronal dynamics. This results in the emergence of effective paths in the
network where this amplification is maximal. The convergence of these paths is
what ultimately concentrates the activity in specific sites, a phenomenon that we
call noise focusing. These sites act as sinks of an effective average flow with large
basins of attraction, explaining the highly heterogeneous nucleation maps, observed
in experiments done in collaboration with the group of J. Soriano.

We also show that the amplification paths that arise from the noise focusing mecha-
nism dynamically generate an effective subnetwork with scale–free topology.

In Chapter 3 we study how the avalanche dynamics and the noise amplification
mechanisms depend on network topology by using regular networks with very
simple motifs. We are able to characterize the avalanches by their propagation
velocity and their radius and relate this quantities to the different network motifs.
This analysis clarifies the directional nature of the amplification mechanisms, thus
providing a microscopic explanation of the highly anisotropic nature of the noise
flow in the system.

In Chapter 4 we develop a coarse–grained model of a neuronal culture as a continu-
ous excitable medium, able to capture the physical picture emerging from Chapter 2.
We have also characterized the structure of the amplification paths caused by the
noise focusing mechanism with the introduction of a new vector field and an ampli-
fication coefficient. The inclusion of these terms, in combination with the effect of
synaptic depression, is sufficient to account for the heterogeneous nucleation. This
approach formalizes the intuitive ideas of anisotropic noise flow that characterize
the noise focusing phenomenon, by emphasizing the need of a nontrivial anisotropic
structure of the noise at the mesoscopic level of description.

Chapter 5 studies the spontaneous activity in neuronal cultures within the framework
of quorum percolation (QP). We show that network structure has a mild effect on
the QP transition and in the formation of the giant component. We also show an
equivalent description of QP based on the neuron model introduced in Chapter 2 and
how it compares to QP. Finally, we present a new model, called stochastic quorum
percolation (SQP) that takes into account the finite probability of subquorum firing.
It extends the QP model into a dynamical description that includes the presence
of noise in the system. We show that when noise and the dynamics are taken into
account, the metric structure of the network plays a much greater role in the actual
nucleation times.

Finally, in Chapter 6 we introduce a network inference method, based on informa-
tion theory, tailored to the study of spontaneous activity in neuronal cultures. The
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method, called Generalized Transfer Entropy (GTE), was previously developed
by O. Stetter, and in here we extend it to the study of spontaneous activity when
both excitatory and inhibitory connections are present. We show that under normal
experimental conditions is almost impossible to detect inhibitory connections when
the neuronal type is now know. To overcome this fact, we propose an experimental
protocol, based on already developed methods for external stimulation, where we
are able to detect and reliably infer inhibitory connections (and distinguish them
from excitatory connections), when a small external stimulation is added to the
system.

7.2 Publications

The work presented in this thesis has spanned two main peer–reviewed publications:

• [Orlandi 2013] Orlandi, J. G., Soriano, J., Alvarez-Lacalle, E., Teller, S. and
Casademunt, J. “Noise focusing and the emergence of coherent activity in
neuronal cultures.” Nature Physics 9, 582–590 (2013).

• [Orlandi 2014] Orlandi, J. G., Stetter, O., Soriano, J., Geisel, T. and Battaglia,
D. “Transfer entropy reconstruction and labeling of neuronal connections from
simulated calcium imaging.” PLOS ONE 9, e98842 (2014).

And two more are currently under preparation:

• Orlandi J.G. and Casademunt, J. “Noise focusing at the mesoscale: a coarse–
grained view of neuronal cultures.”

• Orlandi, J.G. and Casademunt, J. “Stochastic quorum percolation in metric
networks.”

7.3 Perspectives

The work presented here is highly interdisciplinary, spanning various disciplines
in physics and neuroscience, hence there is still much that can be done within this
framework, and in here we proceed to name a few.

The results presented in Chapter 2 have implications in the study of dynamics
on complex networks in general. We have shown that, based on the statistics of
avalanche size at different scales, one may define different effective networks
that decompose the dynamics in different layers. Avalanches at different scales
may exhibit different spatio-temporal structure, eventually breaking the statistical
self-similar structure. The relationship between avalanche dynamics at different
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scales and their interplay with the network structure might have interesting uses in
other dynamical systems and network structures. Within the context of avalanche
dynamics, it is also important to fully characterize the avalanche shape, preliminary
studies show that its shape (avalanche size in time) is asymmetric which can be
related to other systems [Laurson 2013].

An example from a different context where the results from Chapter 2 may be
directly applied is that of rumor propagation in social networks, where the role
of the integrate-and-fire response is played by the so-called ‘illusion-of-truth’ ef-
fect, i.e. the requisite of repeated inputs to grant credibility, prior to propagation
[Moons 2009]. Accordingly, not only the rumor activity network will differ from
the underlying social network, but the points of rumor ‘ignition’ [Kitsak 2010] will
in general depart from the actual community structure of both the social and the
effective networks.

The study of how different topologies affect the underlying dynamics also deserves
more work. In fact, the software presented in Chapter 2 is already capable of gener-
ating networks in confined geometries, like the patterns presented in Section 1.3.5,
where we have observed that the front dynamics can have dramatic changes. In a
similar direction, several results in the context of criticality deserve more attention.
For instance, it is still unclear whether the exponents have some degree of universal-
ity, or rather they always depend on network structure, a fact that could be related
to griffiths phases, which have already been proposed within the context of brain
networks [Moretti 2013].

Several results regarding the noise focusing mechanism depend on the underlying
structure of the noise. For example, the spontaneous activity of individual neurons
depend on the different ionic concentrations in the medium, and small changes in
ionic concentration could completely change the behavior of the system. Although
we have already explored this by introducing variability in the neuron model, more
needs to be done, for example by including endogenously active neurons. This
is also related to the concept of leader neurons, which seem to exist in neuronal
cultures. These neurons might be intrinsically different from other neurons and form
a subpopulation. However, its existence might also be be the result of a collective
effect, namely they are neurons that are present in the paths of high amplification
described in Chapter 2. Another possible study, from an experimental point of
view, would be to change the structure of the noise, for example by modifying
the spontaneous quantal release of neurotransmitters by using several different
chemicals [Bouron 2001].

Another possible extension to this work is within the context of plasticity. The
bursting behavior observed in young cultures appears to change as the network
matures [Wagenaar 2006a], and several groups have associated the new dynamical
regime to self–organized criticality (SOC) [Tetzlaff 2010, Pu 2013]. This could
be explored by including a simple mechanism of plasticity, like spike–timing–
dependent plasticity (STDP), and study the evolution of the synaptic connections
to see if the evolves into a state of SOC. It could very well be that the effective
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subnetwork that we have observed is potentiated by the plasticity mechanisms. On
the other hand, it could also be possible that a homeostatic mechanism is smoothing
the differences.

Several of the results presented in Chapter 5 are preliminary, and still more work is
required, specially regarding the SQP model. The original QP model is a power-
ful tool that extends the classical framework of percolation to neuronal networks,
where individual links have very limited role and the system needs to be char-
acterized by an ensemble of them (m in the QP model). In the same direction,
many useful concepts of network theory need to be modified to be applicable to
neuronal networks. The identification of influential spreaders in complex networks
[Kitsak 2010], or competitive percolation, where single links have a very impor-
tant role [Nagler 2011], as well as explosive percolation [Achlioptas 2009], are all
useful tools within the context of complex networks. Their application to neuronal
networks is not straightforward1, yet they could prove valuable tools.

The results on network inference presented in Chapter 6 show that providing an
accurate description of the network structure based on the underlying dynamics is
extremely difficult, and a lot of work is still required in this context. For example,
spike trains could be inferred from the fluorescence dynamics through Monte Carlo
approaches [Mishchenko 2011a] or peeling [Lütcke 2013]. The results from GTE
could also be improved by network deconvolution [Feizi 2013], which we have
already tried, and the preliminary results are promising.

1 At the single neuron level.



166 7. General conclusions and perspectives



167

A
Resum en Català

Aconseguir una completa comprensió del funcionament del cervell i de la ment,
així com el descobrir noves formes d’identificar, tractar, prevenir i curar trastorns
com Alzheimer, esquizofrènia, epilèpsia i autisme és un dels grans reptes científics
d’aquest segle. Aquest repte és altament multidisciplinari i només es podrà avançar
mitjançant una estreta col·laboració entre científics de moltes disciplines, neuroci-
ència, medicina, biologia, química, informàtica, física, etc. En aquesta tesi aportem
el nostre petit granet de sorra a aquesta tasca com millor sabem fer els físics en
un entorn multidisciplinari, aïllant els problemes i revelant mecanismes bàsics i
fonamentals que s’amaguen dins la complexitat del mon biològic. En aquest treball
s’han estudiat els mecanismes fonamentals que regeixen l’activitat espontània en el
sistema neuronal més elemental i controlat que podem tenir, un cultiu neuronal.

Un cultiu neuronal primari consisteix en la dissociació de neurones en fase embri-
onària i la seva posterior deposició en una placa de petri al laboratori. Aquestes
neurones inicialment són cèl·lules aïllades, però ja 24h després de la deposició
comencen a estendre les seves neurites i a connectar-se amb altres neurones. Durant
aquesta fase, les neurones comencen a mostrar activitat de forma espontània, i.e.,
generen potencials d’acció, tot i que de forma aïllada, sense correlació. En canvi,
quan ja porten prop d’una setmana en cultiu, aquestes comencen a mostrar activitat,
també espontània, però de forma coordinada, on sembla que totes elles s’activin
simultàniament. En aquesta tesi estudiant des de un punt de vista físic, els mecanis-
mes fonamentals que hi ha darrera d’aquest fenòmen, de com les neurones passen
d’actuar com a elements individuals a fer-ho col·lectivament.
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Aquesta tesi comença en el Capítol 1 amb una visió força personal de la ciència en
el segle XXI, fent especial èmfasi en el seu caràcter interdisciplinari i de com, en
aquest cas la neurociència, ha d’aprofitar aquest fet si espera assolir una completa
comprensió del funcionament del cervell. Aquesta introducció també inclou una
revisió històrica, força detallada, de tota la feina que s’ha fet anteriorment en
cultius neuronals, principalment des del punt de vista d’un físic. A més a més,
també s’inclou un resum detallat dels mecanismes fisiològics principals per poder
entendre el comportament d’un cultiu neuronal.

En el Capítol 2 mostrem, mitjançant simulacions numèriques i teoria, com l’activitat
espontània en cultius joves (entre una i tres setmanes) es pot caracteritzar per fronts
d’activitat que es formen, per un procés de nucleació, en punts concrets del sistema
i es propaguen. Els punts on l’activitat pot nuclear no són aleatoris (tot i que la seva
seqüència ho és), i es concentren en zones específiques que anomenem zones de
nucleació. Aquestes zones es poden determinar per la interacció entre l’estructura
de la xarxa i la pròpia dinàmica de les neurones, que hem aconseguit caracteritzar
com a un nou mecanisme, que anomenem focalització del soroll. Aquest mecanisme
descriu com l’activitat individual de les neurones es propaga per la xarxa en forma
d’allaus, les quals es veuen amplificades quan recorren camins específics de la
xarxa. Justament és la confluència d’aquests camins el que genera les zones de
nucleació, actuen com a centres d’atracció de l’activitat. A més a més, aquestes
zones de nucleació tenen una mida característica, així com un domini d’atracció,
que ve determinat principalment per la longitud dels axons.

Aquests camins d’alta amplificació que són conseqüència del mecanisme d’amplifi-
cació del soroll formen una subxarxa amb una estructura totalment diferent de la
xarxa original. La xarxa original, la que descriu les connexions entre les neurones,
ve descrita per una distribució pràcticament Gaussiana, on totes les neurones tenen
pràcticament les mateixes connexions. En canvi, la subxarxa associada als camins
d’amplificació presenta una estructura molt més heterogènia, i s’assimila a una
distribució tipus ´scale-free´, sense una escala característica, en la qual s’observen
’hubs’, neurones per on passa gran part de l’activitat. Un detall important és que
aquestes neurones no tenen cap propietat especial, ni són més actives, ni tenen
connexions més fortes, simplement la seva posició a la xarxa fa que tota l’activitat
que passa a través d’ella acabi sent amplificada. No actuen com a líders, sinó com a
missatgeres.

En el mateix capítol també mostrem confirmació experimental de la existència de
les zones de nucleació i de la propagació de l’activitat en forma de fronts.

En el Capítol 3 tractem des d’un punt de vista més abstracte, els efectes que
l’estructura de la xarxa té en el mecanisme d’amplificació i propagació del soroll.
Mitjançant xarxes regulars, on cada neurona presenta el mateix patró de connexions,
estudiem l’estructura interna de les allaus d’activitat. Aquest anàlisi ens permet
caracteritzar amb ple detall l’estructura de les allaus, i associar-hi una velocitat i
grandària característica, que depèn de la topologia de la xarxa.
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El Capítol 4 conté una descripció de l’activitat dels cultius neuronals a la meso-
escala. Mitjançant el formalisme de sistemes dinàmics i medis excitables, introduïm
un nou model continu (estès a l’espai) que incorpora, a un altre nivell de detall,
el mecanisme de focalització del soroll i presenta la mateixa dinàmica observada
en els cultius neuronals, sense la necessitat d’introduir una xarxa. Això és possi-
ble mitjançant la introducció de nous coeficients de transport. Un d’ells, α , està
directament associat a l’amplificació del soroll, i un altre, V, de caràcter vectorial,
està íntimament relacionat amb la estructura de les allaus observades en el model
microscòpic, de neurones individuals.

El Capítol 5 està dedicat a introduir el concepte de percolació de quòrum esto-
càstica. La percolació de quòrum s’havia fet servir anteriorment per descriure
el comportament d’un cultiu neuronal sota una pertorbació externa (estimulació
elèctrica). El model de percolació de quòrum es basa únicament en el fet que una
neurona necessita un mínim de m veïns actius per disparar. Experimentalment,
aquest nombre m es pot manipular mitjançant fàrmacs que debiliten la força de les
connexions sinàptiques. El model de percolació de quòrum permet descriure com
respon el cultiu a l’estimulació elèctrica en funció de la quantitat del fàrmac aplicat,
i permet caracteritzar-ho com una transició de fase de primer ordre, equivalent a la
transició de fase líquid-gas del model de Van der Waals. A més a més, el sistema
també presenta un punt crític mc on la transició esdevé contínua. En aquest capítol
mostrem primer com el procés de percolació de quòrum depèn de l’estructura de la
xarxa del sistema, i com aquesta afecta a l’estructura de la transició.

També mostrem com es pot generalitzar el model de percolació de quòrum per
incloure la dinàmica real del sistema i els efectes del soroll. Introduïm el model
estocàstic de percolació de quòrum, que associa una probabilitat de disparar a cada
neurona en funció del nombre de veïns que es troben actius. Aquesta descripció ve
motivada pels resultats del Capítol 2, on les neurones disparen espontàniament, i
sempre presenten una probabilitat finita d’activar-se, inclòs quan les veïnes no estan
actives. Aquest nou model és capaç de descriure els observables de la percolació de
quòrum i les seves transicions de fase, i a més permet definir temps de nucleació
i allaus d’activitat, ja que el model és ara dinàmic. A més a més, mostrem com
la incorporació de la dinàmica i del soroll en el model amplifica enormement els
efectes de la topologia de la xarxa.

En el Capítol 6 fem un canvi de perspectiva. Fins ara ens hem dedicat a mostrar,
entre d’altres, com l’estructura de la xarxa influeix en la dinàmica dels cultius neu-
ronals. Ara en canvi, mostrem com es pot inferir l’estructura de la xarxa observant
simplement la dinàmica. El nostre estudi s’engloba dins el marc de la teoria de la
informació, i més concretament, de la transferència d’entropia. La transferència
d’entropia és una mesura que permet identificar la influència que un procés temporal
té en un altre procés. És una mesura d’informació, de com el coneixement d’un
senyal ens ajuda a predir el comportament d’un altre. En aquest capítol mostrem
com aquesta tècnica ens permet inferir la connectivitat en un cultiu neuronal a partir
de l’anàlisi de les senyals de fluorescència que s’obtenen en els experiments. En
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concret, ens centrem en explorar si amb aquesta tècnica som capaços de distingir
entre diferents tipus de connexions (si són excitadores o inhibidores). Demostrem
que en el cas dels cultius, aquesta distinció entre el tipus de connexions només és
possible si tenim un coneixement a priori del tipus neuronal que estem mirant. Tot i
això, també demostrem que mitjançant un protocol d’estimulació externa del cultiu
(equivalent al descrit en el capítol anterior), és possible distingir entre els diferents
tipus de connexions sense el coneixement del tipus neuronal.
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Acronyms

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APV 2-amino-5-phosphonovaleric acid

BA Background avalanche

BDNF Brain–derived neurotrophic factor

CCD Charge–coupled device

CMOS Complementary metal-oxide-semiconductor

CNQX 6-cyano-7-nitroquinoxaline-2,3-dione

DIV Days in vitro

EPSC Excitatory postsynaptic current

EPSP Excitatory postsynaptic potential

IA Ignition avalanche

IBI Interburst interval

IPSC Inhibitory postsynaptic current

IPSP Inhibitory postsynaptic potential

ISI Interspike interval

GABA γ-aminobutyric acid

GC Granger causality

GFP Green fluorescent protein

GTE Generalized transfer entropy

HBP Human brain project

LFP Local field potential

MEA Multi–electrode array

MI Mutual information

NC Neuronal culture
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NF Noise focusing

NMDA N-Methyl-D-aspartic acid

QP Quorum percolation

SA Spontaneous activity

SQP Stochastic quorum percolation

STDP Spike–timing–dependent plasticity

TE Transfer entropy

TTX Tetrodotoxin

XC Cross–Correlation
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