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Why now?



BIG DATA
We are recording more data than ever before 
Probably more than we can analyse

Economics 
Climate research 
High energy physics 



Generating huge amounts of data 
Some of it publicly available 
Leading to new patterns and emerging behaviours 



Transfer Entropy reconstruction of neuronal 
networks from calcium imaging data



2013
neuroscience is in everyone’s mind



The Human Connectome Project



Whole-brain functional imaging

Ahrens et al, Nat Met 2013



Transfer Entropy reconstruction of neuronal 
networks from calcium imaging data

We still need to build (more) models and tools to infer 
connectivity in neuroscience 
Well controlled experimental setup: Neuronal Cultures



500 µm

Orlandi et al, Nat Phys 2013

Neuronal Cultures
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Population and single cell activity

Stetter et al, PLOS Comput Biol 2012

Model 
!

Integrate and fire neurons  
(only excitatory) 
!
Short term synaptic depression 
!
Clustered and/or local  
connectivity 
!
Calcium dynamics 
!
Light Scattering effects



Transfer Entropy

Schreiber, PRL 2000

From J. Beggs’ talk yesterday… 
!
Non-bursting regime 
Spiking data 
Bin size dependence

probably not a result of much generality, though, as not all
parameter values for HOTECI and HOTEPk were explored for
this figure. Before being used to generate data for figure 6,
different values of k and l (to vary the order of the presynaptic and
postsynaptic message lengths, respectively) for HOTECI and
HOTEPk were tried on data binned at 1 ms, and those values that
provided the best performance were used in figure 6. If this
optimization procedure had been tried each time at every bin
width, the curves might not have dropped so precipitously. We did
not perform this more general optimization, however, because
other results suggested that best performance would be achieved at
the smallest bin widths.

Figure 7 shows the results of this optimization procedure for
HOTEPk and HOTECI. The red circle indicates optimum

performance, from where we selected the best values of k and l for
data binned at 1 ms. It is interesting to note that while message
lengths longer than 1 bin generally improved performance, the
longest message lengths (k = l = 5) were not the best. Another
notable feature of this result is that the optimum order for both
HOTEPk and HOTECI is not the same. In fact, the optimal
surfaces for these two measures were quite different, the main
difference being that HOTEPk was worst at high values of l,
whereas HOTECI was worst at low values of l. Further research
will be needed to clarify these differences.

Computational performance of TE
As experimental data sets increasingly contain time series from

100 or more spiking neurons [12,74], the computational efficiency
of algorithms measuring connectivity has become an important
issue. To investigate how computation time scaled for the higher-
order TE algorithms used here (HOTECI, HOTEPk), we tested
the algorithms at various message lengths (3–20) on model data
sets with various numbers of neurons (100–300) and recording
lengths (30–60 min). The firing rate is fixed at 7 Hz for all the
neurons in this test. Figure 8 shows that even for relatively large
data sets containing 200 neurons recorded for 1 hr, higher-order
TE can still be computed in ,5 min with standard computational
resources available to many labs. For D1TE, computation time, T,
scales as

T~C N2 FDð Þ
! "

, ð12Þ

where C is a constant that takes into account machine-specific
factors and the desired time units, N is the number of neurons, F is
the firing rate, and D is the duration of the recording, in number of
time bins. For HOTE, the relationship is slightly more complex,
and the computation time, T, scales as

T~C N2 FDRz2R
# $! "

, ð13Þ

where R is the total order (k + l + 1) used in the calculations. The
derivation of these relationships, as well as other details of
the algorithms, can be found in the supporting information
(Document S1).

Discussion

Main findings
In this work, we have extended single-bin, single-delay transfer

entropy to accommodate a range of delays and message lengths.
We found that these extensions doubled the rate at which effective
connections were correctly identified in a spiking cortical network
model. Moreover, 85% of the total synaptic weight was associated
with true connections. Fortunately, even for 1 hr recordings of 200
neurons, these calculations could be performed in ,5 min on a
currently typical research computer. We offer the code as
freeware, and suggest that it may soon be applicable to
physiological data sets.

Relation to existing work
Although there is a large and growing literature on measuring

various types of connectivity in complex neural networks [6–8],
somewhat fewer papers have been devoted to measuring effective
connectivity in networks of spiking neurons [16,25,39,43,45,64].
In general, this subset of papers has demonstrated that it is possible

Figure 7. Optimization of higher-order TE (HOTE). With HOTE,
the message length of presynaptic neuron J ‘s history (l) and
postsynaptic neuron I ‘s history (k) could vary from 1 to 5. We
measured the true positive ratio, TPR, at a false positive ratio of
FPR = 0.01 for all the combinations of l and k for simulated data binned
at 1 ms. The best combination of l and k is indicated by a red circle. For
HOTEPk (left plot), k = 1, l = 3 was best, and for HOTECI (right plot), k = 3,
l = 2 was best. TPR values are indicated by grayscale bars at the right of
each plot.
doi:10.1371/journal.pone.0027431.g007

Figure 6. Short bin widths generally improve performance.
Comparison of connectivity measures at different bin sizes. The true
positive ratio of all measures (taken at FPR = 0.01) is plotted against bin
sizes ranging from 1 to 50 ms. The performance of most measures
peaks at 1 ms bin size, except for D1TE, which peaks at 17 ms bin size.
For HOTEPk, we used order k = 1, l = 3, and for HOTECI, k = 3, l = 2. These
parameters were selected because they maximized performance for
1 ms bins. The order was not optimized for larger binning sizes (see
text). Beyond 25 ms, performance of all the measures is very low
suggesting that one needs high temporal resolution to see effective
connectivity between neurons. Error bars indicate standard deviations
from 8 simulations, and are shown only every 5 ms for clarity.
doi:10.1371/journal.pone.0027431.g006

Transfer Entropy Applied to Cortical Network Model

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e27431

Ito et al, PLOS ONE 2011

Now 
!
Bursts 
Fluorescence data 
Low temporal resolution
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Generalizing Transfer Entropy

Conditioning on the global population 
(state selection) 
Same-bin (instantaneous) interactions
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(described in detail in the Materials and Methods section), namely the
treatment of ‘‘same bin interactions’’ and the ad hoc selection of
dynamical states.

The original formulation of TE was designed to detect the
causal influence of events in the past with events at a later time.
Practically, since calcium fluorescence is sampled at discrete times,
standard TE evaluates how events occurring in time bin t are
influenced by events occurring in earlier time bins t{1, t{2, . . ..
By including same bin interactions in TE estimation, we also consider
potential causal interactions between events that occur within the
same time-bin t. This is important when dealing with experimental
data of real neuronal cultures since the image acquisition rate is
not sufficiently high to establish the temporal order of elementary
spiking events.

On the other hand, the selection of dynamical states is crucial to
properly capture interactions between neurons which lead to
different activity correlation patterns in different dynamical
regimes. Both simulated and real neuronal cultures indeed show
a dynamical switching between two distinct states (bursting and
non-bursting) that can be separated and characterized by
monitoring the average fluorescence amplitude and restricting
the analysis only to recording sections in which this average

fluorescence falls in a predetermined range. Selection of dynamical
states is discussed in the next section.

Once TE functional connectivity strengths have been calculated
for every possible directed pair of nodes, a reconstructed network
topology can be obtained by applying a threshold to the TE values
at an arbitrary level. Only links whose TE value is above this
threshold are retained in the reconstructed network topology.

Choosing a threshold is equivalent to choosing an average
degree. As a matter of fact, selecting a threshold for the
inclusion of links corresponds to setting the average degrees of the
reconstructed network. Intuitively, and as shown in Figure S1A, a
linear correlation exists between the number of links and the
average degree. Because of this relation, an expectation about the
probability of connection in the culture, and hence, its average
degree, can directly be translated into a threshold number of links
to include.

Based on the aforementioned estimations of probability of
connection and taken into account the different sizes of our
(smaller) simulated network and of our (larger) experimental
cultures, threshold values are roughly selected to include the top
10% of links, for reconstructions of simulated networks, and to
include the top 5% of links, for reconstructions from actual

Figure 3. Dependence of the directed functional connectivity on the dynamical state. A The distribution of averaged fluorescence
amplitudes is divided into seven fluorescence amplitude ranges. The functional connectivity associated to different dynamical regimes is then
assessed by focusing the analysis on specific amplitude ranges. B Quality of reconstruction as a function of the average fluorescence amplitude of
each range. The blue line corresponds to an analysis carried out using the entire data sampled within each interval, while the red line corresponds to
an identical number of data points per interval. C Visual representation of the reconstructed network topology (top 10% of the links only), together
with the corresponding ROC curves, for the seven dynamical regimes studied. Edges marked in green are present in both the reconstructed and the
real topology, while edges marked in red do not match any actual structural link. Reconstructions are based on an equal number of data points in
each interval, therefore reflecting the equal sample size performance (red curve) in panel B. Interval I corresponds to a noise-dominated regime;
intervals II to IV correspond to inter-burst intervals with intermediate firing rate and provide the best reconstruction; and intervals V–VII correspond
to network bursts with highly synchronized neuronal activity. Simulations were carried out on a network with local topology (l~0:25 mm) and light
scattering in the fluorescence dynamics. The results were averaged over 6 network realizations, with the error bars in B and the shaded regions in C
indicating a 95% confidence interval.
doi:10.1371/journal.pcbi.1002653.g003

Excitatory Connectivity from Calcium Imaging
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(described in detail in the Materials and Methods section), namely the
treatment of ‘‘same bin interactions’’ and the ad hoc selection of
dynamical states.
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causal influence of events in the past with events at a later time.
Practically, since calcium fluorescence is sampled at discrete times,
standard TE evaluates how events occurring in time bin t are
influenced by events occurring in earlier time bins t{1, t{2, . . ..
By including same bin interactions in TE estimation, we also consider
potential causal interactions between events that occur within the
same time-bin t. This is important when dealing with experimental
data of real neuronal cultures since the image acquisition rate is
not sufficiently high to establish the temporal order of elementary
spiking events.

On the other hand, the selection of dynamical states is crucial to
properly capture interactions between neurons which lead to
different activity correlation patterns in different dynamical
regimes. Both simulated and real neuronal cultures indeed show
a dynamical switching between two distinct states (bursting and
non-bursting) that can be separated and characterized by
monitoring the average fluorescence amplitude and restricting
the analysis only to recording sections in which this average

fluorescence falls in a predetermined range. Selection of dynamical
states is discussed in the next section.

Once TE functional connectivity strengths have been calculated
for every possible directed pair of nodes, a reconstructed network
topology can be obtained by applying a threshold to the TE values
at an arbitrary level. Only links whose TE value is above this
threshold are retained in the reconstructed network topology.

Choosing a threshold is equivalent to choosing an average
degree. As a matter of fact, selecting a threshold for the
inclusion of links corresponds to setting the average degrees of the
reconstructed network. Intuitively, and as shown in Figure S1A, a
linear correlation exists between the number of links and the
average degree. Because of this relation, an expectation about the
probability of connection in the culture, and hence, its average
degree, can directly be translated into a threshold number of links
to include.

Based on the aforementioned estimations of probability of
connection and taken into account the different sizes of our
(smaller) simulated network and of our (larger) experimental
cultures, threshold values are roughly selected to include the top
10% of links, for reconstructions of simulated networks, and to
include the top 5% of links, for reconstructions from actual

Figure 3. Dependence of the directed functional connectivity on the dynamical state. A The distribution of averaged fluorescence
amplitudes is divided into seven fluorescence amplitude ranges. The functional connectivity associated to different dynamical regimes is then
assessed by focusing the analysis on specific amplitude ranges. B Quality of reconstruction as a function of the average fluorescence amplitude of
each range. The blue line corresponds to an analysis carried out using the entire data sampled within each interval, while the red line corresponds to
an identical number of data points per interval. C Visual representation of the reconstructed network topology (top 10% of the links only), together
with the corresponding ROC curves, for the seven dynamical regimes studied. Edges marked in green are present in both the reconstructed and the
real topology, while edges marked in red do not match any actual structural link. Reconstructions are based on an equal number of data points in
each interval, therefore reflecting the equal sample size performance (red curve) in panel B. Interval I corresponds to a noise-dominated regime;
intervals II to IV correspond to inter-burst intervals with intermediate firing rate and provide the best reconstruction; and intervals V–VII correspond
to network bursts with highly synchronized neuronal activity. Simulations were carried out on a network with local topology (l~0:25 mm) and light
scattering in the fluorescence dynamics. The results were averaged over 6 network realizations, with the error bars in B and the shaded regions in C
indicating a 95% confidence interval.
doi:10.1371/journal.pcbi.1002653.g003

Excitatory Connectivity from Calcium Imaging
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Improvements on raw TE

reaches 60% of true positives at a cost of 10% of false positives,
and an example for l~0:25 mm is shown in Figure 5A.

In both topologies, we observe that for a low fraction of false
positives detection (i.e. at high thresholds HTE) the ROC curve
displays a sharp rise, indicating a very reliable detection of the
causally most efficient excitatory connections. A decrease in the
slope, and therefore a rise in the detection of false positives and a
larger confidence interval, is observed only at higher fractions of
false positives. The confidence intervals are broader in the case of
locally-clustered topologies because of the additional network-to-
network variability that results from the placement of neurons
(which is irrelevant for the generation of the non-locally clustered
ensembles, see Materials and Methods).

Non-local clustering ensemble. To address the reconstruc-
tion quality of the network topology, we focus first on the results
for the non-local clustered ensemble. For a conditioning level
which corresponds to the right hand side of the Gaussian in the
fluorescence amplitude histogram (~gg^0:2), we consider three
main network observables, namely the distributions of local
clustering coefficients, in-degrees, and the distances of connec-
tions. As shown in Figure 4B, we obtain a reconstructed network
that reproduces well the ground truth properties, with similar
mean values and distributions for all three observables considered.
We observe, however, a small shift towards lower clustering indices
(Figure 4B, top panel) and especially towards lower average
distances (bottom panel) for this highly clustered network.

Despite this underestimation bias for instances with high
clustering, Figure 4C shows the existence of a clear linear
correlation between the real average clustering coefficient and
that of the topology reconstructed with generalized TE (Pearson’s
correlation coefficient of r~0:92). Such linear relation allows,
notably, a reliable discrimination between networks with different
levels of clustering but very similar bursting dynamics. Note that
this linear relation between real and reconstructed clustering
coefficient is robust against misestimation of the expected average
degree, or, equivalently, of the number of links to include, as
highlighted by Figure S1B.

TE-based reconstructions also yield estimates of the average
distance of connection —constant and not correlated with the
clustering level— with reasonable accuracy as shown in Figure
S4A.

Local clustering ensemble. For this ensemble (see Figure 5),
the quality of reconstruction can be assessed even visually, due to
the distance-dependency of the connections, by plotting the
network graph of reconstructed connections. In Figure 5B we
compared the structural network (top panel) with the reconstruct-
ed one (bottom panel), obtained by including as links only edges
corresponding to the top 10% of TE values. This corresponds here
to about 600 true positives (*50% of all possible true positives,
and plotted in green) and about 400 false positives (*5% of all
possible false positives, plotted in red). The statistical properties of
the structural and reconstructed networks are shown in Figure 5C.

Figure 7. Dependence of reconstruction quality on TE formulations and recording length. A ROC curves for network reconstructions of
non-locally clustered (left panel) and locally-clustered topologies (right), based on three TE formulations: conventional TE (blue), generalized TE with
same bin interactions only (red) or also including optimal conditioning (yellow). The vertical lines indicate the performance level at TP10%, and
provide a visual guide to compare the quality of reconstruction between different formulations. B Decay of the reconstruction quality as measured by
TP10% for the two topology ensembles and for generalized TE with conditioning, as a function of the data sampling divisor s. A full simulated
recording of 1 h in duration provides a data set of length S1h, corresponding to a data sampling fraction of s~1. Shorter recording lengths are
obtained by shortening the full length time-series to a shorter length given by S’~S1h=s, with s~1,:::,19. The insets show the same results but
plotted as a function of S’ in semi-logarithmic scale. For both A and B, the panels in the left column correspond to the non-locally clustered
ensembles (cfr. Figure 4), while the panels in the right column correspond to the locally-clustered ensemble (cfr. Figure 5). Shaded regions and error
bars indicate 95% confidence intervals based on 6 networks.
doi:10.1371/journal.pcbi.1002653.g007

Excitatory Connectivity from Calcium Imaging
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After many more (statistical) tests… check with the experiments 

Stetter et al, PLOS Comput Biol 2012



Reconstruction on experimental data

Stetter et al, PLOS Comput Biol 2012

We are still missing the “truth”



What about inhibition?

Orlandi et al, PLOS ONE 2014

I should talk about this… 
I won’t (very short)



What about inhibition?

The performance of this first two-step reconstruction approach
is shown in Figure 3B. The reconstruction of excitatory
connections has a quality as good as the one obtained with a
priori knowledge of neuronal type based on extrinsic labeling (see
Figure 3A). However, the performance markedly deteriorates for
the reconstruction of inhibitory links, since only 40% of the
inhibitory connections are correctly identified at 10% of false
positives.

Note that an additional complication arises with the described
two-steps pipeline. A given link might be attributed a combined
score above the inclusion threshold, both when considering the
sum and the difference of original GTE scores. In this case, the link
would be labeled as ‘‘both excitatory and inhibitory’’, a fact which
is excluded by Dale’s principle. Despite this problem, we might still
try to combine the ‘‘E–only’’ and ‘‘E+I’’ reconstructions to infer
the nature of each neuron. To test the accuracy of such
identification we try to label neurons as excitatory or inhibitory
based on a highly ‘‘pure’’ structural network reconstruction. To do
so, we select a very high GTE threshold for link, in such a way that
in the inferred subnetwork —including, correspondingly, very few
links only— the fraction of false positives remains small (with a
maximally tolerable ratio of 5%). We first sum and subtract ‘‘E–
only’’ and ‘‘E+I’’ scores to obtain putative excitatory and
inhibitory links, as just discussed. We next compute the output
degrees of the neurons for each subnetwork, kE and kI ,
respectively. Finally, we rank each neuron according to the
difference kE{kI . Following Dale’s principle, the set of neurons
with the highest (positive) ranking would be labeled as excitatory,
and those with the lowest (negative) ranking as inhibitory. The
results, however, as shown in the inset of Figure 3B, indicate that
this approach does not provide better results than a random
guessing of neuronal type (see Methods for details on significance
testing) and a different approach is required.

Reconstructing and labeling connections from
stimulated dynamics

As a matter of fact, the major challenge for an accurate
reconstruction and precise labeling of neuronal types is the
identification of inhibitory links, and this for the following reason.
To estimate GTE, we need to evaluate the probability of each
given neuron to be active in a short time window of a duration
Dt~(kz1) timage, where k~2 is the order of an assumed Markov

approximation (see Methods) and timage~20ms is the image

acquisition interval. With these parameter choices, we obtain then
Dt~60ms. Neurons in a culture spike with an average inter-burst
frequency of n*0:1Hz, resulting in a low firing probability within
each time bin. Continuing this reasoning, the probability that two
unconnected neurons spike at random in the same time window is

given by (nDt)2*4:10{5. The number of coinciding events Nevents

expected in a recording is thus:

Nevents*Nsamples (nDt)2, ð1Þ

where Nsamples is the number of independent samples in a

recording. In a typical recording session lasting *1 h, one gets

Nsamples*1:8:105 independent samples and therefore Nevents*6.

Hence, one can expect to observe, on average, just six concurrent
spikes between any pair of unconnected neurons. If an excitatory
link exists between two neurons, the conditional probability of
firing rises above this random level and more coincidence events
are observed, turning into an appreciable contribution to the GTE
calculation. However, if an inhibitory link is present, the number
of simultaneous spikes gets further reduced with respect to the
already very small chance level, making any accurate statistical
assessment very difficult. Nevertheless, we note that the number of

detected events scales as n2 with the frequency of firing, and even a

Figure 3. Optimal network reconstruction. A ROC curves for the reconstruction of a network with both excitatory and inhibitory connections
active, supposing to know a priori information about neuronal type. GTE is first applied to the ‘‘E+I’’ data. Next, following Dale’s principle and
exploiting the available information on neuronal type, links are classified according to their excitatory (red) or inhibitory (blue) nature. B ROC curves
for the best possible identification of excitatory and inhibitory connections, when information on neuronal type is unaccessible. Excitatory links (red)
are identified by adding together the Transfer Entropy scores of simulations run in ‘‘E–only’’ and ‘‘E+I’’ conditions, and later thresholding them.
Inhibitory links (blue) are identified by computing the difference in Transfer Entropy scores between the runs with inhibition present and blocked.
Inset: fraction of excitatory and inhibitory neurons correctly identified from these ROC curves. Results were not significantly different from random
guess (see Methods). All the results were averaged over different network realizations. The shaded areas in the main plots, as well as the error bars in
the inset, correspond to 95% confidence intervals.
doi:10.1371/journal.pone.0098842.g003

Transfer Entropy Reconstruction and Labeling of Neuronal Connections

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e98842

slight increase in spiking frequency would enhance considerably
the reconstruction performance.

A promising approach to increase neuronal firing consists in
forcing the neuronal network through external stimulation.
Several studies on neuronal cultures have used external drives,
typically in the form of electrical stimulation, to act on neuronal
network activity, for instance to investigate connectivity traits
[51,62], modify or control activity patterns [63,64], or explore
network plasticity [65,66]. Such in vitro approaches are reminiscent
of in vivo clinically relevant techniques such as deep brain
stimulation, used in the treatment of epilepsy and movement
disorders [67,68].

External stimulation in neuronal cultures has been reported to
increase neuronal firing [64] and to reduce network bursting
[63,65], a combination of factors that, in the GTE reconstruction
context, improve the accuracy in the identification of the network
architecture. To explore potential improvements in reconstruc-
tion, we simulate the effect of an applied external drive in a purely
phenomenological way by increasing the frequency parameter of
the Poisson process that drives spontaneous activity. This
additional drive never increases the spontaneous firing frequency

beyond 3 Hz, being meant to represent the effects of a rather weak
external stimulation. Due to this contained increase of firing rate,
the collective bursting activity of the simulated network continues
to be shaped dominantly by network interactions, rather than by
the drive itself.

The performance of our GTE algorithm combined with a weak
network stimulation is illustrated in Fig. 4A, where we show the
fraction of true positives in the reconstruction of ‘‘E–only’’
networks at 5% false positives. The presence of even very small
external drives substantially enhances reconstruction based on
GTE. For higher drives, reconstruction performance reaches a
plateau that quantifies the range of optimum stimulation.
Performance later decays due to the excess of stimulation, which
substantially perturbs spontaneous activity and alters qualitatively
the global network dynamics. We incidentally remark that the
incorporation of the external drive makes unnecessary — actually,
even deleterious — the instantaneous feedback term correction
(IFT, see Methods), i.e., an ad hoc modification to the original
formulation of TE which was introduced in [22] to cope with the
poor frame rate of calcium fluorescence recordings, definitely
slower than the time-scale of monosynaptic interaction delays. The

Figure 4. Reconstruction improvement through external stimulation. A and B, fraction of true positives from the reconstructions at the 5%
false positive mark for the studied networks. ‘‘E–only’’ networks are shown in A; ‘‘E+I’’ networks in B. Inset: dependence of the spontaneous firing rate
on the applied external drive, emulated here by increasing the rate of the background drive to the culture in silico. All the excitatory reconstructions
reach a stable plateau in the reconstruction after removal of the instantaneous feedback term (IFT) correction (see Methods). The inhibitory
reconstruction is accurate only for higher values of the external drive. C ROC curves extracted from A and B with an external stimulation of 4 Hz.
Inset: fraction of excitatory and inhibitory neurons correctly identified from these reconstructions. Identification was statistically significant compared
to random guessing. For excitatory neurons, pv0:01 (**); for inhibitory neurons, pv10{4 (***). D Example of an actual reconstruction after
identification of neuronal type. Identified excitatory neurons are shown in red and inhibitory ones in blue. Incorrectly identified neurons are shown in
grey. Correctly identified excitatory and inhibitory links are shown in red and blue, respectively, and wrongly identified links are shown in black. For
clarity in the representation of the links, a threshold value lower than the optimal has been applied.
doi:10.1371/journal.pone.0098842.g004

Transfer Entropy Reconstruction and Labeling of Neuronal Connections
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If  you have prior knowledge of  neuronal type you 
can still do something… 
!
Otherwise you have to be creative (combine 
different recordings and stimulation protocols)

Orlandi et al, PLOS ONE 2014



Yesterday….

From M. Eichler's talk… 
!
Be very wary about using single methods… 
!
What to use in practice? 
For causal inference… all and more



A different approach

Challenges in Machine Learning (collaborative competitions)

Launch the first (of  a series) of  challenges in connectomics



First connectomics challenge



AUC-based scoring
A

U
C



Rankings



Post-challenge

Analysis of  methods used by the participants: 
Deep convolutional neural networks 
State selection 
Multivariate logistic regression of  inferred spike trains 
Inverse covariance matrix 
Random forests and gradient boosting machines 
Network deconvolution 
…

Checking for robustness of  the methods 

Code from the winning teams will be publicly available with 
open sources licenses (and all the data associated with the 
challenge) http://www.kaggle.com/c/connectomics

http://www.kaggle.com/c/connectomics
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