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Why now?



BIG DATA

We are recording more data than ever before
Probably more than we can analyse

Economics
Climate research
High energy physics



Generating huge amounts of data
Some of it publicly available
Leading to new patterns and emerging behaviours
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reconstruction of neuronal
hetworks from Imaging data

We still need to build (more) models and tools to infer
connectivity in neuroscience
Well controlled experimental setup: Neuronal Cultures



Neuronal Cultures
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Transfer Entropy
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Low temporal resolution



Generalizing Transfer Entropy
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Improvements on raw TE
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After many more (statistical) tests... check with the experiments
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we full randomiz

== partial randomiz.
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We are still missing the “truth”
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Experiment Simulation
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I should talk about this...
I won’t (very short)



What about inhibition?

A known neuronal types B unknown neuronal types

1 . . . 1
g 08 0.8}
=
.("%
3 0.6} 0.6}
()
=
S 04 0.4| o
S 2 0.8
g é 0.6
0.2 {1 0.2 §0.4 s

— excitation g 02
- inhibition T 0 oxc.  inh.
% 02 04 06 o8 1 % 02 04 06 08 1
fraction of false positives fraction of false positives

’ Orlandi et al, PLOS ONE 2014
3 0.8}
=
2
o | .
7 0.6 If you have prior knowledge of neuronal type you
5 5 can still do something...
© 0.4 =0.8
IS g06
S o2 504 Otherwise you have to be creative (combine
=V 5 0.2 . . . .

£ different recordings and stimulation protocols)
exc. inh.
0]

0 02 04 06 08 1
fraction of false positives



From M. Eichler's talk...
Be very wary about using single methods...

What to use in practice?
For causal inference... all and more



A different approach
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$3,000 *» 144 teams

Dashboard Competition Details » Getthe Data » Make a submission
Home
Data o
Make a submission Reconstruct the wiring between neurons from
At fluorescence imaging of neural activity
Description
Evajuation Understanding the brain structure and some of its disease alterations is key to
T/& research on the treatment of epilepsy, Alzheimer's disease, and other
Timeline neuropathologies, as well as understanding the general function of the brain and its

learning capabilities. The brain contains nearly 100 billion neurons with an average
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& https://www.kaggle.com/c/connectomics/data IR

Deep CNN for Time Series
Correlation Measurement What's in the data?
28 days ago
Validation and test data include time series of activities of neurons "extracted" frorr
Fast Matlab code to get a score ) ) ) )
of 333,2220 simulated calcium fluorescence imaging data. The neurons are arranged on a flat
surface simulating a neural culture and you get the coordinates of each neuron. Th

model takes into account light scattering effects. [Learn more...]
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The network connectivity for the validation (valid) and test data.
How do | get started?

We provide a sample submission corresponding to the Correlation
benchmark, sample code and tutorial material. See also our frequently asked
questions.

File types

o "fluorescence" files (type F): These are the time series of neural activities
obtained from fluorescence signals. The neurons are in columns and the
rows are time ordered samples. The signals are sampled at 20ms
intervals.

° "networkPosition" files (type P): Each row represents a neuron. First
column = X position; second column =Y position. The neurons span a
1mm? square area.
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Post-challenge

Analysis of methods used by the participants:
Deep convolutional neural networks

State selection

Multivariate logistic regression of inferred spike trains
Inverse covariance matrix

Random forests and gradient boosting machines
Network deconvolution

Checking for robustness of the methods

Code from the winning teams will be publicly available with
open sources licenses (and all the data associated with the
challenge) http://www.kaggle.com/c/connectomics
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