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Abstract

We organized a Challenge to unravel the connectivity of simulated neuronal networks. The
provided data was solely based on fluorescence time series of spontaneous activity in a net-
work constituted by 1000 neurons. The task of the participants was to compute the effective
connectivity between neurons, with the goal to reconstruct as accurately as possible the
ground truth topology of the network. The procured dataset is similar to the one measured
in in vivo and in vitro recordings of calcium fluorescence imaging, and therefore the algo-
rithms developed by the participants may largely contribute in the future to unravel major
topological features of living neuronal networks from just the analysis of recorded data,
and without the need of slow, painstaking experimental connectivity labeling methods.
Among 143 entrants, 16 teams participated in the final round of the challenge to compete
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for prizes. The winners significantly outperformed the baseline method provided by the or-
ganizers. To measure influences between neurons the participants used an array of diverse
methods, including transfer entropy, regression algorithms, correlation, deep learning, and
network deconvolution. The development of “connectivity reconstruction” techniques is
a major step in brain science, with many ramifications in the comprehension of neuronal
computation, as well as the understanding of network dysfunctions in neuropathologies.

Keywords: neuronal networks, effective connectivity, fluorescence calcium imaging, re-
construction, graph-theoretic measures, causality.

1. Introduction

All living neuronal tissues, from the smallest in vitro culture up to the entire brain, exhibit
activity patterns that shape the modus operandi of the network. Activity may take the
form of spontaneous discharges, as occurs in the absence of stimuli, or in the form of
precise patterns of activity during information processing, memory, or response to stimuli.
A major paradigm in modern neuroscience is the relation between the observed neuronal
activity (function) and the underlying circuitry (structure). Indeed, activity in a living
neuronal network is shaped by an intricate interplay between the intrinsic dynamics of the
neurons and their interconnectivity throughout the network.

In the quest for understanding the structure-function relationship, the neuroscience
community has launched a number of endeavors which, in an international and cooperative
effort, aim at deciphering with unprecedented detail the structure of the brain’s circuitry
(connectome) and its dynamics (Kandel et al., 2013; Yuste and Church, 2014). In Europe,
the Human Brain project aspires at developing a large-scale computer simulation of the
brain, taking advantage of the plethora of data that is continuously being gathered. In the
United States, the BRAIN Initiative aims at developing technologies to record neuronal
activity in large areas of the brain, ultimately linking single-cell dynamics, connectivity,
and collective behavior to comprehend brain’s functionality. The difficulty and high cost
of these quests (Grillner, 2014) have called for parallel, more accessible strategies that can
complement these large-scale projects.

With the hope to delineate parallel strategies in the understanding of neuronal circuits,
we launched in April 2014 a ‘Connectomics Challenge’ aimed at developing computational
tools to answer a simple yet defying question: how accurately can one reconstruct the
connectivity of a neuronal network from activity data? To shape the challenge, we built
a numerical simulation in which we first designed a neuronal circuit, therefore establishing
its ground–truth topology, and later simulated its dynamics considering neurons as leaky
integrate-and-fire units. We also modeled the recording artifacts and noise associated with
calcium imaging.

The network that we simulated mimics the spontaneous activity observed in neuronal
networks in vitro. Neuronal cultures, i.e. neurons extracted from brain tissue and grown in
a controlled environment (Figure 1A), constitute one of the simplest yet powerful experi-
mental platforms to explore the principles of neuronal dynamics, network connectivity, and
the emergence of collective behavior (Eckmann et al., 2007; Wheeler and Brewer, 2010).
The relative small size of these networks, which typically contain a few thousand neurons,
allows for the monitoring of a large number of neurons or the entire population (Spira and
Hai, 2013; Orlandi et al., 2013; Tibau et al., 2013). The subsequent data analysis —often
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Figure 1: Experimental motivation. (A) Example of an in vitro neuronal culture, derived
from a rat embryonic cortex, containing on the order of 3000 neurons. The detail shows
a small area of the network in bright field and fluorescence, depicting individual neurons.
In a typical experiment, neurons are identified as regions of interest (yellow boxes), and
their analysis provide the final fluorescence times series to be analyzed. (B) Fluorescence
spontaneous activity traces for 3 representative neurons. Data are characterized by a back-
ground signal interrupted either by episodes of coherent activity termed network bursts, or
by individual firing events of relative low amplitude and occurrence.

in the context of theoretical models— provides the basis to understand the interrelation
between the individual neuronal traces, neuronal connectivity, and the emergence of collec-
tive behavior. Activity in cultures can be recorded by a number of techniques, from direct
electrical measurements (Spira and Hai, 2013) to indirect measurement such as fluorescence
calcium imaging (Grienberger and Konnerth, 2012; Orlandi et al., 2013), which uses the
influx of Calcium upon firing to reveal neuronal activation (Figure 1B). Although Calcium
imaging has a typical temporal resolution on the order of ms, its non-invasive nature and
the possibility to simultaneously access a large number of neurons with accurate spatial
resolution (only limited by the optical system for measurements) have made it a very at-
tractive experimental platform both in vitro and in vivo (Bonifazi et al., 2009; Grewe et al.,
2010).

2. Challenge Design

The goal of the Challenge was to identify directed connections of a neuronal network from
observational data. Using this kind of data constitutes a paradigm shift from traditional
approaches based on interventional data and causal inference, where a planned experiment
is required to perturb the network and record its responses. Although interventional ap-
proaches are required to unambiguously unravel causal relationships, they are often costly
and many times technically impossible or unethical. On the other hand, observational
data, which means recordings of an unperturbed system, can be used to study much larger
systems and for longer periods.

The data for the challenge was generated using a simulator previously studied and vali-
dated (Stetter et al., 2012; Orlandi et al., 2014) for neuronal cultures. As shown in Figure 1,
mature neuronal cultures usually develop into a bursting regime, characterized by long peri-
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Figure 2: Simulated neuronal network for the Challenge. (A) The designed network con-
tained 1000 neurons preferentially connected within 10 communities (marked with different
colors in the figure), and with additional connections between communities. Each neuron
connected on average with 30 other neurons. (B) A detail of the connections of a single neu-
ron. For clarity, only 50% of the connections are shown. (C) Top: Raster plot showing the
spontaneous activity of 3 randomly chosen neurons in the network. Bottom: Corresponding
fluorescence traces. Note the existence of both network bursts and isolated firings. Traces
are vertically shifted for clarity.
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ods of very low neuronal activity and short periods of very high (bursting) activity (Orlandi
et al., 2013; Tibau et al., 2013). This is a very interesting regime to check connectivity
inference algorithms, since the system switches from a scenario where connections play al-
most no role to another one where the system appears to be highly coherent with effective
all-to-all connectivity profiles (Stetter et al., 2012). Although these two dynamic states
shape different effective connectivities, the actual structural connectivity layout remains
unchanged.

Connectivity inference techniques have usually focused on analyzing spiking data, with
binary signals identifying the presence (1) or absence (0) of neuronal firing. However,
real spiking data are only available for a narrow set of experimental systems, and usually
involve invasive electrode arrays or single-cell (path clamp) techniques. Recent advances
in imaging allow the simultaneous recording of thousands of neurons (Ohki et al., 2005;
Panier et al., 2013). However, the identification of single spikes in imaging data cannot
always be accomplished and one has to directly analyze the fluorescence signals. Our data
also take that into account and the signal given to participants models the fluorescence
signal of a calcium marker activated when a neuron fires. It also takes into account most of
the experimental limitations, such as low acquisition speed, noisy data, and light scattering
artifacts (Stetter et al., 2012). The latter is important, since the fluorescence of a neuron
influences the neighboring ones, giving rise to correlations between signals that are spurious.

The major features of the simulated networks for the Challenge are the following:

• Network structure. Our simulated data is inspired on experimental recordings in
an area of roughly 1 mm2 (Stetter et al., 2012; Tibau et al., 2013). In that region
all neurons are able to physically reach any other neuron and the network can be
considered as a random graph. For the small training datasets we used N = 100
neurons with an average connectivity of 〈k〉 = 12 and varying levels of clustering1, from
0.1 to 0.6, and the neurons were placed randomly in a 1× 1 mm square area (Guyon
et al.). For the larger datasets however, we used a different network structure that
was never revealed to the participants. This network is shown in Figure 2A, and its
reconstruction by the participants shaped the overall goal of the challenge. Those
datasets (including the ones used for the final scores) consisted of N = 1000 neurons.
The neurons were distributed in 10 subgroups of different sizes, and each neuron
connected with other neurons in the same subgroup with the same probability, yielding
an internal average connectivity of 〈ki〉 = 10. Each subgroup had a different internal
clustering coefficient, ranging from 0.1 to 0.6. Additionally, each neuron was randomly
connected with 〈ko〉 = 2 other neurons of a different subgroup (Figure 2B). All the
neurons were then randomly placed on a 1 × 1 mm square area and their indices
randomized, so the network structure was not obvious in the adjacency matrix. In
fact, none of the participants reported any knowledge of the real network topology.

• Neuron dynamics. We used leaky integrate and fire neurons with short term synap-
tic depression, implemented in the NEST simulator (Gewaltig and Diesmann, 2007).
For the small networks, N = 100, the synaptic weights were the same for any neuron

1. Understood as the “average clustering coefficient” in network theory, i.e., the number of triangles a
neuron forms with its neighbors over the total number of triangles it could form given its connectivity.
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and were obtained through an optimization mechanism to reproduce the observed ex-
perimental dynamics with a bursting rate of 0.1 Hz. For the big networks, N = 1000,
we ran the optimization mechanism independently for each subnetwork and then for
the whole network to also achieve the target of a 0.1 Hz bursting rate. In this way,
the whole network was bursting as a single unit, but each subnetwork had a different
set of synaptic weights.

• Fluorescence model. The fluorescence model that we used mimics the fluorescence
response of calcium markers inside neurons (Stetter et al., 2012). When a neuron
fires, calcium enters the cell and binds to the marker, which becomes fluorescent.
This fluorescence signal has a slow response and an even slower decay time. It also
saturates if the neuron fires multiple times in a short interval. Illustrative fluorescence
traces of the simulated networks are shown in Figure 2C.

The network architectures used to generate the simulated data are summarized in Ta-
ble 1.

3. Results

The challenge lasted three months (from February 5 to May 5, 2014) and attracted 143
participants. The participants were asked to work simultaneously in two equivalent datasets,
one for validation of the ‘reconstruction’ code and one for actual testing. They received
immediate feed-back on the validation dataset on a public leaderboard. On the test dataset,
however, their scores remained hidden until the end of the challenge. The scores from the
private leaderboard (calculated on test data) for the top ten ranking participants are shown
in Table 2. The calculated metric is the ‘area under the curve’ (AUC) of a Receiver-
Operator Characteristic (ROC) 2 analysis (Bradley, 1997; Stetter et al., 2012), a metric
commonly used in classification problems. Here, we brought back the problem of network
reconstruction to a two-class classification problem: edge present or absent. The motivation
for using this metric is its availability on the Kaggle platform used for the challenge and its
familiarity to challenge participants. In Section 3.3, we compare this metric with the area
under the Precision Recall (PR) curve, a metric often used in information retrieval, which
could be used as an alternative scoring method.

The results of the top ranking participants who submitted their code were verified by
the organizers, who successfully reproduced their results. These results and pointers to code
are shown in Appendix A. The second ranked participants chose not to submit their code
and renounced to their prize.

We also surveyed the participants to compile statistics about algorithm, software and
hardware usage, as well as human and computer time spent 3 Below we provide some general
analyses of the results of the competition. Extensive details will be given in an upcoming
crowd sourced paper co-authored by the organizers and the participants.

2. The AUC is computed by integrating the ROC curve.
3. http://tinyurl.com/connectomicsDatasheet
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Table 1: Data procured to the participants. Each archive contained files with the fluores-
cence time series (F) and the spatial location of the neurons (P). The adjacency matrix (N)
was also provided in the archives used for training purposes.

Archive Description Provided
files

validation Fluorescence and positional data for the validation phase of
the challenge (results on ’public leaderboard’). Network of
N=1000 neurons.

F, P

test Fluorescence and positional data for the test phase of the
challenge (results on ’private leaderboard’). Network of
N=1000 neurons.

F, P

small Six small networks with N=1000 neurons. Each network has
the same connectivity degree but different levels of clustering
coefficient, intended for fast checks of the algorithms.

F, P, N

normal-1 Network of N=1000 neurons constructed similarly to the
’validation’ and ’test’ networks.

F, P, N

normal-2 Network of N=1000 neurons constructed similarly to the
’validation’ and ’test’ networks.

F, P, N

normal-3 Network of N=1000 neurons constructed similarly to the
’validation’ and ’test’ networks.

F, P, N

normal-
3-
highrate

Same architecture as normal-3, but with highly active neu-
rons, i.e., higher firing frequency.

F, P, N

normal-4 Network of N=1000 neurons constructed similarly to the
’validation’ and ’test’ networks.

F, P, N

normal-
4-
lownoise

Same network architecture as normal-4 (and same spiking
data) but with a fluorescence signal with a much better sig-
nal to noise ratio.

F, P, N

highcc Network of N=1000 neurons constructed similarly to the
’validation’ and ’test’ networks, but with a higher clustering
coefficient on average.

F,P,N

lowcc Network of N=1000 neurons constructed similarly to the
’validation’ and ’test’ networks, but with a lower clustering
coefficient on average.

F,P,N

highcon Network of N=1000 neurons constructed similarly to the
’validation’ and ’test’ networks, but with a higher number
of connections per neuron on average.

F,P,N

lowcon Network of N=1000 neurons constructed similarly to the
’validation’ and ’test’ networks, but with a lower number of
connections per neuron on average.

F,P,N
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Table 2: Private leaderboard rankings for the top 10 participants (test AUC scores).

# Team Name Score

1 AAAGV 0.94161

2 Matthias Ossadnik 0.94102

3 Ildefons Magrans 0.94063

4 Lukasz 8000 0.93956

5 Lejlot and Rafal 0.93826

6 Sium 0.93711

7 Alexander N and Vopern 0.93666

8 gaucho 81 0.93385

9 killertom 0.93011

10 dhanson 0.92885

3.1. Challenge duration

The graph in Figure 3 shows performance progression as a function of time. We have
plotted the best public and private AUC submitted for each day versus the number of days
from the beginning of the challenge. Two baseline performances of GTE and correlation
with discretization have also been added. The performances increased slowly throughout
the challenge, but most notably in the first two months. However, the survey indicates
that only one third of the participants estimated that they had sufficient time to complete
the tasks of the challenge. One third also expressed their interest to continue refining the
methods.

AUC public
AUC private
GTE (public)

Correlation with discretisation (public)

A
U

C

challenge days
0       10       20      30      40       50      60       70       80      90

0.95

0.93

0.91

0.89

0.87

Figure 3: Progression of the average performance of the participants along the duration of
the challenge, comparing the AUC results on the validation dataset (public) with the results
on the test dataset (private). The blue and dashed red lines indicate baseline techniques,
and correspond to GTE and correlation with discretization AUCs, respectively.
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The graph in Figure 4 shows the number of submissions above baseline. The vertical red
and green lines are the AUCs using baseline techniques GTE and correlation with discretiza-
tion. Out of 1827 total submissions received, 321 were invalid submissions (AUC=0.0), 106
had an AUC below 0.5, 116 had an AUC between 0.5 and 0.68946 (the first baseline ’cor-
relation with discretization’), 527 have an AUC between 0.68946 and 0.89252 (the second
baseline ’GTE’), and 767 had an AUC above GTE. The median value of all the submissions
(with an AUC above 0.5) was 0.89905.
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Figure 4: Histogram of all the submissions received during the challenge. The green and red
bars indicate baseline techniques, and correspond to GTE and correlation with discretiza-
tion, respectively.

3.2. Overfitting

The graph in Figure 5 plots the results on test data vs. validation data for the final
submissions, limited to scores exceeding the results obtained with plain correlation (i.e.
Pearson correlation coefficient with no lag and no preprocessing). We see a strong correlation
between the validation and test results. At low scores, the final test data seem “easier”
(larger scores are obtained by most participants on test data than on validation data). Few
participants overfitted by obtaining better results on validation data than on test data.

3.3. PR curves

First, we compared ROC curves and precision-recall (PR) curves, as depicted in Figure 6.
We show in orange the curves of the top ranking participants, in black those of the winner
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Figure 5: Scatter plot of validation vs test AUC scores for the top participants.

(team AAAGV) and in blue those of the baseline method based on Transfer Entropy. We
remind that the true positive ratio (TPR) is the fraction of correct connections found among
all true connections, false positive ratio (FPR) is the fraction of connections erroneously
guessed among truly absent links, “recall” is a synonym of true positive ratio and “precision”
is the fraction of correct connections found among all connections called significant.
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Figure 6: Performance of the Challenge winner (AAAGV team, shown in black), the rest of
participants (orange), and the performance procured by Transfer Entropy (blue) with two
classical benchmarks: (A) Receiver operating characteristic (ROC) curve and (B) precision
recall curve.
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In many ways the PR curve is more useful for experimentalists to assess the accuracy
of the networks. For instance, using the green curve, we can see that, if we are willing to
accept that 50% of the connections are wrong (precision of 0.5), we can retrieve 40% of the
connections of the network (recall or TPR of 0.4). In contrast, the readings of the ROC
curve may be deceivingly good: for a TPR of 0.4 (log 10(0.4) ' −0.4), we obtain an FPR
in 0.01, but, we care much less about correctly identifying absent connections than missing
true connections.

3.4. Edge orientation

Another important aspect of the problem we posed is the capability of network reconstruc-
tion algorithms to identify the direction of the connection, not only the presence or absence
of a connection. Our metric of success did not emphasize connection orientation, making it
possible to obtain good results even with a symmetric matrix. To separate the algorithms
with respect to edge orientation, we computed the score of the challenge (AUC) limited to
the pairs of neurons having only one connection in either direction (“connected neurons”).
The results are shown in Table 3. It illustrates that edge orientation is very difficult com-
pared to merely detecting the presence of a connection: the best score drops from 0.94 for
the undirected network to 0.64 for the directed one. Team ranked number 4 (Lukasz 8000)
performed best with respect to this metric. This team used a deep learning method based
on convolutional neural networks. Feature learning may have played an important role in
detecting details of the time series that are useful to determine edge orientation.

Table 3: Analysis of edge orientation (AUC scores).

# Team Name Undirected Network Directed Network

1 AAAGV 0.94 0.61

2 Matthias Ossadnik 0.94 0.63

3 Ildefons Magrans 0.94 0.60

4 Lukasz 8000 0.94 0.64

5 Lejlot and Rafal 0.94 0.63

6 Sium 0.94 0.63

7 Alexander N and Vopern 0.94 0.61

8 gaucho 81 0.93 0.61

9 killertom 0.93 0.61

10 dhanson 0.93 0.61

Mean 0.94 0.62

3.5. Subnetworks

Unknown to the participants, the large networks that we used for validation and test data
had a substructure: they were organized in 10 subnetworks with varying clustering coef-
ficients. We define the clustering coefficient as the average over the sub-network of local
clustering coefficients. Local clustering coefficients (Watts and Strogatz, 1998) compute
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the ratio of connected neighbors of a node over the total number of possible connections.
In Figure 7 we show that the AUC scores of subnetworks (averaged over the top ten ranking
participants) vary linearly with the log of the average clustering coefficients of the subnet-
works.

We also computed the “long range” AUC score, i.e. the AUC score restricted to con-
nections between subnetworks. On average over all top 10 ranking participants we obtained
0.8 (compared to 0.94 for the overall network).

0.1 0.2 0.3 0.4 0.5
0.70

0.75

0.80

0.85

0.90

0.95

average clustering coefficient

AU
C

Figure 7: AUC scores of subnetworks (averaged over the top ten ranking participants) as a
function of clustering coefficient, drawn in log scale for clarity.

4. Methods

For each category of methods (pre-processing, feature selection, dimensionality reduction,
classification etc.) we report the fraction of participants having used each method. Note
that the sum of these numbers do not necessarily add up to 100%, because the methods are
not mutually exclusive and some participants did not use any of the methods.

The algorithmic steps for network reconstruction could be very broadly divided into the
following steps:

1. Preprocessing of fluorescence signals: Figure 8A summarizes the different prepro-
cessing techniques used by the participants. Some of the methods of the participants
were spike timing extraction using either filtering and thresholding techniques, or
through deconvolution methods such as (Vogelstein, 2009; Vogelstein et al., 2009).

2. Feature extraction Figure 8B shows the different feature extraction techniques used
by the participants. Inverse correlation was used to filter out indirect interactions via
fast partial correlations (Ryali et al., 2012).
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3. Dimensionality reduction: The statistics in terms of number and percentage of
participants for the different techniques used for dimensionality reduction is shown
in Figure 8C.

0 4 8 12
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Non-linear dimensionality reduction
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Figure 8: Summary of the different methods used by the participants. Bars represent total
count, and percentages the fraction of participants that used each method. (A) Prepro-
cessing of fluorescence signals. (B) Feature extraction. (C) Dimensionality reduction. (D)
Classification techniques.

4. Classification techniques: Some recurrent techniques used by the participants were
deep learning (Weston et al., 2012), generalizations of transfer entropy (Barnett et al.,
2009; Orlandi et al., 2014) and information theoretical features, ad hoc topological fea-
tures (e.g. geometric closure) and growing “a lot of trees” (random forests (Breiman,
2001), boosting methods). The statistics in terms of number and percentage of par-
ticipants for the different techniques used for classification are shown in Figure 8D.

We also analyzed the factsheets with respect to the hardware and software implemen-
tations:

• Hardware: Many participants made use of parallel implementations (80% used mul-
tiple processor computers and 13% ran analyses in parallel). Memory usage was
substantial (50% used less than 32 GB and 27% less than 8 GB).
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• Software: Most participants used Linux (50%), followed by Windows (40%) and
MAC OS (30%). Python was the top choice (67%) for coding, followed by MATLAB
(37%).

The amount of human effort involved in adapting the code to the problems of the
challenge varied but was rather significant because about 37% of the participants reported
spending more than two weeks of programming. The total machine effort varied, with 43%
reporting more than a few hours while another 27% reported more than two weeks.

A brief description of the methods of the top four ranking participants is given in the
Appendix. Common to all method was the importance of preprocessing, including signal
discretization or inference of spike trains. But the network inference step was rather differ-
ent in the various methods. The winners (AAAGV) inferred an undirected network obtained
through partial correlations, estimated with inverse covariance matrix, then post-processed
the network in an attempt to recover edge directions (see Sutera et al. (2014) for details).
Hence this method is multivariate: it takes into account all neurons in the network, it is not
solely based on pairs of neurons like the baseline method used in Generalized Transfer En-
tropy. Matthias Ossadnik (ranked second) used a different multivariate approach: he used
multivariate logistic regression of inferred spike trains, followed by an AdaBoost classifier
integrating other information, including neuronal firing rates. Ildefons Magrans (ranked
third) used multiple pairwise connectivity indicators varying the preprocessing parame-
ters, integrated by an overall classifier based on ensembles of trees (see de Abril and Nowe
(2014) for details). Multivariate interactions were taken into account in that method by
post-processing the connectivity matrix with network deconvolution. Lukasz 8000 (ranked
fourth) used deep convolutional neuronal networks (see Romaszko (2014) for details). Al-
though the method is sophisticated in the sense that it is based on learned features of the
temporal signal, it is not multivariate in the sense that it treats pairs of neurons indepen-
dently. The proceedings of the challenge also include descriptions of the method of team
Lejlot and Rafal (Czarnecki and Jozefowicz, 2014), ranked 5, using several based predictors
integrated with a Random Forest classifier and the method of killertom (Tao et al., 2014),
ranked 9, using an improved version of Generalized Transfer Entropy (which was given as
baseline method).

It is promising to see that several of the top ranking participants obtained good perfor-
mance based only on statistics of pairs of neurons. Although clearly multivariate methods
should provide superior performance, pairwise methods promise to scale much better to
larger networks.

5. Conclusions

This first connectomics challenge allowed us to identify state-of-the-art methods to solve
a difficult network reconstruction problem. The methods of the top ranking participants
were very diverse and will pave the way to further research, integrating key ideas and
analysis tools to increase performance. The participants performed better on the problem
of edge detection than on edge orientation. More emphasis should be put on orientation
in upcoming challenges. In an upcoming crowdsourced paper we intend to involve both
the challenge organizers and the participants in a deeper analysis of the devised strategies
and analysis tools. We are also in the process of applying the methods of the top ranking

14



Connectomics Challenge

participant to real biological data to assess their ability to reveal or predict key connectivity
features of living neuronal networks. In collaboration with biologists, we are also preparing
new data for a future connectomics challenge dedicated to the analysis of in vivo and in
vitro recordings.
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Appendix A. Challenge Verification Results

1. Winners prize #1 (first place, verified) 500 USD and 1000 USD travel
award + Award certificate

AAAGV The code from the winning team AAAGV, publicly available at https://
github.com/asutera/kaggle-connectomics, was run successfully on a desktop PC,
it used 7 GB of RAM and it took 30h to run in single core mode on a 3 GHZ i7 CPU
for each dataset. The code is built in Python and only uses standard dependencies.
There was a issue with a specific library version but this has been resolved. Also
we only need to run 1 script for the whole computation (main.py). From the valid
dataset we obtained an AUC of 0.9426 and for the valid dataset and 0.9416 for the
test dataset, which are the same as the ones reported in Kaggle.

2. Winners prize #2 (third place, verified) 250 USD and 750 USD travel
award + Award certificate

Ildefons

Ildefons code, publicly available at https://github.com/ildefons/connectomics

consisted of 6 separate scripts. The following are the time and memory requirements
for each of the scripts. The main challenges were installing the required R package
gbm and his script makeFeatures.R which needed 128 G. This R script started a
MATLAB server in the SGE (Sun Grid Engine) background. We had to execute
makeFeatures.R separately for normal-1, normal-2, valid, and test. His code was
executed on the standard compute nodes on the cluster. The compute nodes have 2
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Table 4: Memory Requirements and Time for Ildefons’ code.

Script Time (dd:hh:mm:ss) Memory

makeMat.R 00:00:09:29 10.937G

makeoo.m 00:04:22:15 09.617G

makeFeatures.R

02:07:37:25 (normal-1)
00:12:28:46 (normal-2)
00:12:24:17 (valid)
00:12:24:47 (test)

30.051G (normal-1)
22.287G (normal-2)
23.046G (valid)
23.055G (test)

normalizeFeatures.R 00:00:48:44 44.541G

fitModels.R 00:02:05:38 12.339G

createSolution.R 00:00:10:23 27.082G

INTEL CPUs, 16 processing cores, and 128 GB RAM. The statistics for the execution
of his code can be found in Table 4.

The code passed verification successfully. His AUC for the Kaggle submission gen-
erated by us is 0.94066. This is better than his leader board score of 0.93900. The
difference between the two scores is 0.00166.

3. Winners prize #3 (fourth place, verified) 100 USD and 400 USD travel
award + Award certificate

Lukasz Romaszko

The code of this team is found at: https://github.com/lr292358/connectomics.
The details for Lukasz’s code can be found in Table 5. His solution involved predicting
the outcomes eight different times and averaging. All of his code passed verification
successfully. The bottlenecks were installing theano (Python module) on the GPU
units and gaining access to the GPU units. We have 5 cluster nodes with GPU
accelerators. Each node has 1 accelerator. Each GPU has 2496 cores. The accelerator
is NVIDIA Tesla Kepler (K20).

After merging, his score is 0.93931, which is slightly better than his score of 0.93920
on the leader board. The difference between the two is is 0.00011 or, in other words,
negligible.

Appendix B. Description of Sample Methods and Sample Code

Matlab: We provide Matlab sample code to:

• read the data

• prepare a sample submission

• visualize data

• compute the GTE Stetter et al. (2012) coefficient and a few other causal direction
coefficients

19

https://github.com/lr292358/connectomics


Orlandi Ray Battaglia Guyon Lemaire Saeed Soriano Statnikov Stetter Soriano

Table 5: Memory Requirements and Time for Lukasz’s code.

Seed Max
Memory

Time
(dd:hh:mm:ss)

AUC

1 31.566 G 02:23:47:32 0.93618

2 31.566 G 02:23:24:37 0.93663

3 31.566 G 03:00:18:40 0.93646

4 31.566 G 03:00:28:06 0.93614

5 31.566 G 02:23:50:08 0.93618

6 31.566 G 02:23:52:20 0.93564

7 31.566 G 02:23:51:33 0.93658

8 31.566 G 02:23:42:50 0.93579

• train and test a predictor based on such coefficients.

The Matlab sample code is suitable to get started. We provide a script (challengeFast-
Baseline) that computes a solution to the challenge (big “valid” and “test” datasets) in
a few minutes, on a regular laptop computer. This uses Pearson’s correlation coefficient
(Correlation benchmark, AUC = 0.87322 on the public leaderboard). The data are first
discretized with a simple method. Using more elaborate discretization methods such as
OOPSI may work better. The other network reconstruction methods, including GTE, are
not optimized: they are slow and requires a lot of memory.

C++: Network-reconstruction.org provides C++ code which would help participants
to:

• read the data

• prepare a sample submission

• compute the GTE coefficient and a few other causal direction coefficients

Note: The fluorescence matrices for small networks have dimension 179498 x 100 and of
large networks 179500 x 1000. Even though the GTE code is “optimized” it is still slow
and requires 10-12 hours of computation for the big 1000 neuron networks on a compute
cluster.

Python: We are providing scripts that:

• read the data

• discretizes

• prepare a sample submission using correlation.

One participant also made Python code available.
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The baseline network reconstruction method, which we implemented, is described in
details in (Stetter et al., 2012). It is based on Generalized Transfer Entropy (GTE), which is
an extension of Transfer Entropy first introduced by Schreiber (Schreiber, 2000), a measure
that quantifies predictive information flow between stationary systems evolving in time.
It is given by the Kulback-Leibler divergence between two models of a given time series,
conditioned on a given dynamical state of the system, which in the case of fluorescence
signals corresponds to the population average. Transfer Entropy captures linear and non-
linear interactions between any pair of neurons in the network and is model-free, i.e., it does
not require any a priori knowledge on the type of interaction between neurons. Apart from
GTE, we have also provided the implementation of cross correlation and two information
gain (IG) measures based on entropy and gini for network reconstruction. Cross correlation
gives best results when there are zero time delays, which reduces it to a simple correlation
coefficient measure. Hence, all these methods treat the data as independent instances/points
in space instead of time series data. Another module that we have added to our software
kit is a supervised learner, which extracts features from a network whose ground truth
values are known and builds a simple linear classifier for learning whether a connection is
present between two neurons or not. Currently, the features extracted are GTE, correlation,
information gain using gini and information gain using entropy.

Appendix C. Description of the Algorithms of the Winners

We provide a high level description of the method of the top ranking participants provided
in their fact sheets.

Team: AAAGV
The key point is building an undirected network through partial correlations, estimated

through inverse covariance matrix. As preprocessing they use a combination of low and high
pass filters to filter the signals and they try to filter out bursts or peak neural activities.
They stress that their main contribution is the preprocessing of the data. The calcium
fluorescence signal is generally very noisy due to light scattering artifacts. In the first
step, a low pass filter is used to smooth the signal and filter out high frequency noise. To
only retain high frequency around spikes, the time series is transformed into its backward
difference. A hard-threshold filter is next applied to eliminate small variances and negative
values. In a final step, another function is applied to magnify spikes that occur in cases of
low global activity.

For inference, this team assumed that the fluorescence of the neurons at each point can
be modeled as random variables independently drawn from the same time-invariant joint
probability distribution. They then used partial correlation to detect direct associations be-
tween neurons and filter out spurious ones. Partial correlation measures contain dependence
between variables and has been used for inference in gene regulatory networks De La Fuente
et al. (2004); Schäfer and Strimmer (2005).

As the partial correlation matrix is symmetric, this method was not useful in detect-
ing directionality. Some improvement was obtained by choosing an appropriate number of
principal components. The method was sensitive to the choice of filter parameters.
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Team: Matthias Ossadnik
He uses multivariate logistic regression of inferred spike trains (thresholded derivative

signals). Then the scores of the regressive model are fed into a modified AdaBoost Freund
and Schapire (1995) classifier together with other information, such as neuronal firing rates.

Team: Ildefons Magrans
Ildefons designed a feature engineering pipeline based on information about connec-

tivity between neurons and optimized for a particular noise level and firing rate between
neurons. Instead of using a single connectivity indicator, he optimizes several indicators.
As a first step, he used OOPSI, which is based on the sequential Monte-Carlo methods, in
his spike inference module. Spikes below a noise-level are treated as background noise and
removed. After that, time steps containing spiking activity above the synchronization rate
are removed as inter-bursts recordings are more informative for topology reconstruction.
As connectivity indicator, he used plain correlation which however did not provide any di-
rectionality information. In order to eliminate arbitrary path lengths caused by direct and
indirect effects, he used network deconvolution Feizi et al. (2013) which takes into account
the entire connectivity matrix. The classifiers he uses with the features generated from
correlation are Random Forests Liaw and Wiener (2002) and Gradient Boosting Machines
Ridgeway (2006).

This method also could not identify directions of connections and correlation and the
singular value decomposition step of network deconvolution had an extremely high compu-
tational complexity.

Team: Lukasz8000
Convolutional Neural Networks (CNN) go beyond feed forward neural networks in their

ability to identify spatial dependencies and pattern recognition. CNNs recognize smaller
patterns or feature maps in each layer eventually generalizing to more complex patterns in
subsequent layers. Each convolutional layer is defined by the number and shapes of filters it
has alongwith its ability to learn patterns. In addition, max pooling Boureau et al. (2010)
is used to reduce the size of the generated feature maps.

He uses a deep convolutional neuronal network LeCun et al. (1998) to learn features of
pairs of time-series hinting at the existence of a connection. In addition he also introduces
an additional input layer, the average activity of network. Lukasz used preprocessing to
retain regions of higher activity conditioned on a particular threshold. These active regions
help to detect interdependencies. The other important choice which influenced results was
that of an activation function. He used tanh in the first convolutional layer followed by Rec-
tified Linear Unit Nair and Hinton (2010) in the next two layers. To improve the network
structure, he used max pooling. Gradient descent was combined with momentum Polyak
(1964) and this helped to navigate past local extrema.
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