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Cooperativity of self-organized Brownian motors pulling on soft cargoes
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We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an
external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes
in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We
model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the
collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core re-
pulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak
noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We
present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads
generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For
weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of
motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical
scenario is enriched by resonances associated to commensurability of different length scales. Large clusters

exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.
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I. INTRODUCTION

The collective behavior of molecular motors plays a cen-
tral role in a large variety of active processes in cell biology
[1-3]. While the essential physical mechanisms underlying
individual molecular motor function are now well under-
stood within a general perspective in nonequilibrium physics
[4-7], it has been emphasized that complex emerging phe-
nomena occur when interacting motors act collectively, such
as bidirectional motion, oscillations, hysteresis, or the forma-
tion of dynamical structures [8—11]. Motors often act in large
assemblies, such as in the so-called “rower” motors. In other
instances, the so-called “porter” motors, which are usually in
charge of transport in intracellular traffic, work either indi-
vidually or in relatively small groups, typically less than ten.
These motors, such as conventional (dimeric) kinesins, are
processive, that is, they perform a large number of steps
before detaching from the track filament. Typically, proces-
sive motors have more difficulty to work collectively than
individually because the presence of other motors can inter-
fere in their cycle [11]. A typical collective task of processive
motors is the transport of vesicles over long distances [12].
To that purpose, small groups of motors are required to con-
trol the distance to be traveled by the vesicle, which depends
on the number of motors linked to its membrane through the
detailed regulation of the kinetics of binding or unbinding
between motors and the microtubule [13]. In such cases, the
detailed interactions between motors may not be relevant. In
recent studies, however, it has been shown that the coordi-
nated action of groups of kinesins must be invoked to ex-
plain some tasks that require relatively large forces, such as
the formation of membrane tubes [14-21]. The situation
where processive motors pull on soft cargoes, such as
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vesicles or membrane tubes, differs fundamentally from most
commonly studied cases of motors attached to rigid cargoes,
because—due to the fluidlike nature of the membrane—the
motors cannot exert tangential forces to the cargo, with the
friction with the membrane being negligible. Since the cargo
is also deformable, motors can cluster at the front regions
where a normal component can be exerted (see discussion in
Ref. [18]). For geometrical reasons, this limits to relatively
small numbers of motors per track. In the experiments of
conventional kinesin pulling on tubes it has been shown that
two to four motors per track are sufficient to explain the
observations [18]. In a previous work [17] it has been argued
that the ability to transmit force at a finite velocity by con-
ventional kinesin along a single track in the pulling-tube ar-
rangement could saturate with the number of motors for rela-
tively small numbers of them. These studies raise the
question on the extent to which motors are capable to trans-
mit forces through their direct motor-motor interactions, that
is, to add up their individual contributions to the overall
force on the cargo.

In studies of rigidly or elastically coupled motors, their
strong coupling has been shown to lead to nontrivial collec-
tive effects [4,9,11]. In particular, it has been pointed out that
motors can become highly cooperative by increasing the
overall velocity and the overall force, but also undertaking
tasks more efficiently. The situation in transport of soft car-
goes, however, is fundamentally different in that the motors
are free to move with respect to each other and that the
external force is asymmetrically loaded, that is, the external
load in unequally applied to the motors. The combination of
geometrical and mechanical constraints gives rise to a dy-
namical self-organizing mechanism: the trailing motors, be-
cause they are unloaded, will move faster than the loaded
ones in front, and thus accumulate behind them. A motor
cluster will dynamically form, and its collective behavior
will depend strongly not only on the motor-motor interac-
tions but also on the external force that ultimately controls
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the cohesion of the cluster. Even though attractive interac-
tions may be present, the motor cluster is a self-organized
dynamical structure, not a motor assembly resulting from the
physical interactions.

The effect of interactions on the collective velocity-force
curves in such an arrangement was first studied in Ref. [17],
based on discrete Monte Carlo simulation and exact calcula-
tions based on a generalized asymmetric simple exclusion
process (ASEP) formalism. There it was pointed out that the
collective velocity-force curves were strongly sensitive to
motor interactions and that strong deviations from naive su-
perposition of the effects of individual motors are to be ex-
pected. The discrete ASEP approach gives an interesting per-
spective from the physics of nonequilibrium phase
transitions [22-24] and is advantageous with respect to
Langevin continuum formulations in that it allows remark-
able analytical insights and is computationally very efficient.
However, it may be problematic when generic motor-motor
interactions other than excluded volume are expected to play
a crucial role, because the effect of interactions is indirectly
encoded in stochastic transition rates in a phenomenological
way that is not easily correlated a priori to actual interaction
potentials between motors. This is particularly important
when more than two motors are involved, as in the closely
packed clusters formed under unequal loading. To clarify this
point and to make connection with other studies of collective
motors where the Langevin picture has been illuminating
[8-10], the problem was later addressed with this other per-
spective in Ref. [25], following the tentative discussion of
this alternative already initiated in [17].

The Langevin formulation is a more mechanistic ap-
proach where the internal-state degrees of freedom of mo-
tors, related to conformational changes, are resolved and
coupled to positional degrees of freedom through explicit
arbitrary interaction potentials. Concepts such as force trans-
mission and energetic efficiency are thus more naturally in-
corporated. In particular it allows us to explore the approach
to the limits of mean field (MF) or rigid coupling motors,
which have been previously studied. The present paper ex-
pands and generalizes the approach presented in Ref. [25],
where nontrivial cooperative effects of Brownian motors
where discussed, often with dramatic effects in the collective
velocity-force curves and in the efficiency curves. We now
include analytical results that complete the study from a the-
oretical point of view and generalize and complete the nu-
merical simulations with more general ratchet models to
identify and understand the underlying physical mechanisms
of cooperativity and its degree of universality. The study
transcends the biological motivation into the more general
context of Brownian motors and nonequilibrium transport
[4,6,26-28]. We will focus on motors that are driven by
noise, a situation that may be considered as particularly in-
efficient when acting individually, but which will turn highly
cooperative under unequal loading. In the biological context,
several types of molecular motors have been identified that
are well modeled by a noise-driven ratchet mechanism, typi-
cally in the monomeric kinesin subfamily, most remarkably
the so-called KIF1A, a motor that is responsible for vesicle
transport in axons [29-31]. In this paper we will not only
address the general problem of noise-driven motors under
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unequal loading, but will also address the implications for
the parameter ranges relevant to specific biological motors.
The question is of significant importance in biology since
axonal traffic disorders are known to be associated to many
neurodegenerative diseases [32]. Because of its specific high
demands of long distances, high speeds, and large forces,
axonal trafficking requires the cooperative action of groups
of motors. This suggests that a high cooperativity of noise-
driven motors pulling on soft cargoes could be a key reason
why axonal vesicle transport is specifically carried out by
these type of motors such as monomeric kinesins, which—
when taken individually—are clearly outperformed by con-
ventional (dimeric) kinesins.

Layout and summary of results

In Sec. II we set forth the theoretical framework that
serves as basis for the subsequent discussion. We first define
our mathematical model (Sec. II A) and discuss the rationale
of a Langevin continuous formulation in comparison with a
common alternative approach based on discrete Monte Carlo
random walkers (Sec. II B). In Sec. II C we define a mean-
field approximation and discuss its predictions for the collec-
tive behavior of motor clusters under unequal loading. We
also introduce some explicit criteria of validity of this ap-
proximation. The mean-field behavior defined here provides
a suitable basis to classify the different possible scenarios of
cooperativity. Finally, in Sec. I D we provide some exact
results for the one-motor problem and for the mean-field ap-
proximation.

Section III is devoted to the case of repulsive interaction
between motors. In Sec. III A we focus on the case of short-
range excluded volume repulsion. We recover and generalize
the results of enhanced cooperativity reported in Ref. [25],
now for the case of general asymmetry of the potential. We
discuss the mechanism that is responsible for the generic
enhancement of cooperativity and, using the exact results for
the mean-field case, we show how this enhancement be-
comes dramatically pronounced in the weak-noise limit. In
this section we also show the origin of the exceptional phe-
nomenon of reduced cooperativity when the hard-core size
of the motor becomes commensurate with the potential pe-
riod, and we show that this may lead in some cases to non-
monotonic velocity-force curves, a phenomenon first en-
countered for attractive interactions in Ref. [25], but that
may also occur for purely repulsive interactions. The conver-
gence with the number of motors of the velocity-force curves
to a single curve that exhibits extensive scaling of the force
with the number of motors at a given velocity is discussed
only for the fully asymmetric potential, while the generic
case is postponed to Sec. VIIL. In Sec. III B we supply some
exact results for the two-motor problem in the limit of van-
ishing noise intensity that prove the phenomenon of en-
hanced cooperativity for broad ranges of parameters. These
results prove that for the fully asymmetric ratchet potential,
the two-motor problem exhibits finite velocity, finite power,
and finite efficiency in the strict limit of vanishing noise
intensity, provided that the external force is unequally
loaded, thus isolating the cooperativity mechanism and illus-
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trating its deterministic nature. Some proofs are sketched and
some results are stated without proof. Finally, in Sec. III C
we show explicitly the convergence to the mean-field limit
when the range of the repulsive potential is increased and
also for hard-core repulsion when the noise strength is in-
creased.

In Sec. IV we analyze the case of attractive interactions.
We first discuss the case of rigid elastic coupling as a refer-
ence case and then generalize the results of Ref. [25] of
nonmonotonic force-velocity curves. We discuss the implica-
tions of this behavior for the dynamical selection of the num-
ber of motors in the cluster in terms of the external force and
show that for arbitrary asymmetry of the ratchet potential the
problem is remarkably richer, but that the different behaviors
can be interpreted in terms of commensurability effects be-
tween the different length scales involved.

The effects of cooperativity in the collective efficiency of
the system are addressed in Sec. V. It is shown that the global
efficiency increases in general with the number of motors,
generalizing the results of Ref. [25]. In particular we discuss
the role of the degree of coordination of the cycles of the
motors in the cluster. This becomes optimal at the larger
speeds in the case of attractive interactions. In this case, we
also show that the efficiency increases monotonically with
the force if the number of motors is suitably selected.

In Sec. VI we briefly address the nontrivial effects asso-
ciated to the commensurability of the different length scales
of the ratchet potential and the mean motor distance, leading
to rather exotic dynamical behaviors. The dynamics of large
clusters are treated in Sec. VII, where we analyze the struc-
ture, force distribution, and synchronization of the motor
clusters. In particular we discuss how new phenomena can
emerge for large clusters, such as the occurrence of stochas-
tic transitions between two velocities, one positive and one
negative, a phenomenon that had been previously observed
in rigid assemblies of motors. Finally, in Sec. VIII we dis-
cuss the implications for biological motors, in particular con-
cerning the monomeric kinesion KIF1A, and we present an
overview of the results obtained in Sec. IX.

II. THEORY OF COOPERATIVITY
A. Formulation of the problem: Minimal model

We consider a set of N motors moving along a one-
dimensional track. An external force F' opposing the motion
is applied only to the foremost motor. For simplicity, and to
better isolate the cooperative mechanisms, the motors are
assumed infinitely processive, that is, they perform steps in-
definitely along the track without detaching from it. This
assumption may not be realistic for some biological applica-
tions but can be easily relaxed at a later stage of the research,
once the cooperative mechanisms have been clarified [33].
We assume that motors interact with an arbitrary (nonbind-
ing) potential. In all cases the potential will have a hard-core
repulsive part of size o, the motor size, which in general
does not need to coincide with the period of the track. Here,
we will consider a two-state ratchet model that is a slightly
simplified version of the generic model of Ref. [4], yet more
general than the case studied in Ref. [25]. The model is de-
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FIG. 1. (Color online) Piecewise linear potential for the motor-
track interaction. Gray—the zone where transitions are allowed:
localized and instantaneous from U; to U, and delocalized after a
time 7 from U, to U;. See more details in the text.

fined by a set of Langevin equations for the positions x; of
the N motors:

)\xi=_U;(xiaki)_EW,(xi_xk)_Fali"'gi(t), (1)
k#i

where i=1,...,N. k; are discrete stochastic variables that la-
bel the two internal states of each motor, characterized by a
strongly bound state with a potential U,(x;,1) and a weakly
bound state with a potential U;(x;,2). W(§) is the interaction
potential between motors. In addition to the unequal loading,
this setup differs fundamentally from some studies of collec-
tive Brownian motors, such as in Refs. [34,35], in that the
switching between states is not simultaneous for all motors
(flashing ratchet), but it occurs independently for each motor.
The friction coefficient N is assumed to be the same for the
two states, so thermal noise is described by a Gaussian white
process with autocorrelation,

(G g(1") = 2kpTN ;81— 1), 2)

and defining a noise strength with the dimensions of a diffu-
sion coefficient,

D = kzT/\. (3)

We assume a generic piecewise asymmetric linear potential
U,(x,1) (hereinafter, the U, state), like the sawtooth potential
plotted in Fig. 1, with period €, height U, and asymmetry
a/€. We define a sliding velocity v=U/N(€—a). The state
U,(x,2) (hereinafter, the U, state) is a weakly bound state
that we model for simplicity as a flat potential. Excitations
from U, to U, are localized at the minimum of U,. This
corresponds to a far-from-equilibrium condition Au>kgT,
where for the case of biological motors A is typically the
chemical potential difference for adenosine triphosphate
(ATP) hydrolysis. Consistently, thermal activation is ne-
glected [4,26]. For simplicity we also assume that the exci-
tation to the U, state is instantaneous upon reaching the
minimum of U;. This condition could be easily relaxed to
account for a finite dwell time at the ATP-binding site, which
in biological motors may not be negligible. This would com-
plicate the analysis with an extra parameter, but would offer
no qualitative changes unless this additional time scale be-
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comes comparable or even larger than the others involved, a
case that will be specifically addressed elsewhere [33] (see
also Sec. VIII). Finally, we assign a finite lifetime 7 to the
diffusive state U,. Deexcitations from that state are spatially
delocalized. A natural assumption would be that the deexci-
tation rate was constant, implying an exponentially distrib-
uted decay time. For simplicity, however, throughout this
paper we will assume that the decay time is not distributed,
but is a fixed value 7. This assumption simplifies signifi-
cantly the analytical calculations and the form of the final
expressions, while it does not introduce any new physics
[36]. In particular it allows us to find exact nontrivial solu-
tions for the two-motor problem. The simulations reported
here are also carried out in this case, but we have checked
that an exponentially distributed decay time makes no quali-
tative difference. In some cases, we also consider an addi-
tional simplification by neglecting thermal noise in the U,
state, the one that is deterministically dominated. This as-
sumption will also simplify the final expressions of the
single-motor problem and is justified in the weak-noise limit.
The model with this additional assumption will be referred to
as the minimal model. In general we will not neglect noise in
the U, state unless otherwise indicated.

The problem has three relevant dimensionless parameters,
which we group as

T

-a’

o

(4)
the ratio of the lifetime of U, to the characteristic sliding
time in Uy;

¢

—,
\N4DT

B (5)

the ratio of the track period to the diffusive length in U,; and
the asymmetry parameter

a=

: (6)

SRS

Our main observables will be the cluster velocity, defined as
Vy(F)=(x,), and the collective efficiency [26], which in the
biological context reads

(7

where ry(F) is the reaction rate, in our case the total number
of excitations per unit time for all the motors. In some ex-
pressions we will use the dimensionless force
F

U

f (8)

B. Rationale of continuous versus discrete approaches

Two different stochastic approaches have been proposed
so far to deal with the problem at hand. One is based on
generalizations of the so-called ASEP, proposed in Ref. [17]
and developed later in Refs. [18,20], where motors perform a
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biased random walk in a one-dimensional lattice. The corre-
sponding systems are then modeled as a discrete master
equation well fitted to Monte Carlo simulation. This formal-
ism is convenient to numerical simulation and also to ana-
lytical treatment and has been widely used in a more general
context of nonequilibrium physics. On the other hand, the
alternative continuous Langevin approach presented in the
previous section, also introduced in Ref. [17] and later de-
veloped in Ref. [25], has some conceptual advantages for the
problem at hand. Although the two formalisms can be made
equivalent in principle in a sufficiently general formulation,
in their simplest and practical formulations (with small num-
ber of parameters), they are not, and may yield significantly
different results. In some aspects the comparison between the
physics built in the model is not simple, in particular with
regard to the nature of the interactions and the rules of force
distribution.

In the biological context, the Langevin approach dis-
cussed here builds on the implicit assumption that the motor-
motor interaction and the motor-track interaction can be
treated separately, so that the force acting on a given motor is
the superposition of both. That is, it assumes that the coarse-
grained mechanistic view of the two-state models for a single
motor can now be assumed to be valid for two interacting
motors, and eventually for N, just adding a position-
dependent interaction potential between them. This is not
obvious since both effective interactions are phenomenologi-
cal and are meant to result from some coarse-graining pro-
cedure, which in principle should be carried out jointly for
the N-body problem, and in general it is different for each N.
The alternative physical picture of the ASEP approach im-
plicitly involves an opposite complementary view, one in
which the presence of the second motor interferes with the
first motor in a way that is more complicated than just adding
a force. Since an explicit coarse graining of the two-motor
problem cannot be carried out explicitly, this second view
postulates some phenomenological hopping rates that are de-
signed to properly encode the interactions. In its simplest
formulation [17], the presence of a second motor next to the
first modifies the hopping rates of the first, but the presence
of a third motor does not. Consequently, this formulation
then reduces the N-body statistics to the two-motor problem.
The physical idea behind this assumption is that additional
motors do not transmit force to the first directly, but they
contribute to the collective behavior through an entropic re-
pulsion (i.e., a third motor modifies the motion of the first
motor by changing the statistics of the encounters between
the first and second motors). This entropic force must even-
tually saturate with N, as found in [17], implying that adding
more motors to a cluster has eventually no effect. In fact, in
the lattice model of [17], the velocity-force curves for differ-
ent N’s all converge to a single curve independent of N for
large N. On the contrary, in the Langevin two-state model,
the mechanical force between motors is explicit, and in ad-
dition to entropic repulsion, there is direct force transmission
built in. Then it may be expected that the total force exerted
by the cluster is extensive with the number of motors. In Ref.
[25], for instance, we showed in a simple case that the
velocity-force curves for large N collapsed to a single curve
when the force was scaled by N [37].
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One of the advantages of the Langevin approach is that
the treatment of interactions is more transparent and versa-
tile. It allows us to easily interpolate between weakly inter-
acting motors and rigid coupling, for instance, or to simply
approach a mean-field limit increasing the range of the po-
tential. It is illustrative to remark the different meaning of
“attractive” interactions in Refs. [17,25]. The way an effec-
tive attraction is modeled in the discrete model of [17] does
not correspond to a potential with an attractive part in the
Langevin formulation since it contains no action-reaction
principle. It precludes the possibility that the leading motor
pulls on the trailing one. The result of two “attracting” mo-
tors is then opposed in the two scenarios. In the Langevin
model it enhances cooperativity even more than with hard-
core repulsion, while in the discrete model it reduces it.

In general, which one of the two approaches does capture
best the collective behavior of a real problem is an issue that
must be addressed on a case-by-case basis. For the case of
monomeric (one-headed) kinesin, for instance, we propose
that a ratchet model is appropriate and can account for ob-
served collective behavior. In this case we expect that force
transmission holds for large numbers of motors. For conven-
tional (two-headed) kinesin, instead, a model with limited
force transmission might be more adequate.

C. Mean-field theory and cooperativity
1. Predictions of the mean-field ansatz

The collective velocity-force curves for the general Eq.
(1) can be solved exactly within a MF ansatz, which may not
be justified in general but provides the right behavior for
sufficiently long-ranged interactions and/or sufficiently large
noise intensity. Within the MF approach, the N-motor prob-
lem will reduce formally to the single-motor problem. In this
context, our MF ansatz consists of approximating the total
force exerted to each motor from the other motors at any
time, with the average steady-state value, that is, W’ (x;—x;)
=(W'(x;—x;)). This approximation preserves the correla-
tions between positional and internal degrees of freedom for
each single motor, but neglects correlations between posi-
tional and internal degrees of freedom of different motors
[38]. Then, all the equations get decoupled, and each motor
is subject to a constant force. Since in the steady state all
motors of the cluster must move at the same speed, all
constant-force terms in the equations must be equal and add
up to the external force F, so each motor is subject to a net
force F/N. The MF prediction for the collective velocity-
force curve then reads

VIE(F) = V\(FIN), (9)

that is, each motor in the cluster moves with the speed that it
would have if isolated and being loaded with its equal share
of the total force F/N. Notice that the above expression
makes no assumption on the nature of the single-motor prob-
lem, which may be treated exactly and thus exhibit complex
nonlinear behavior. In the particular case of a linear velocity-
force for the single-motor problem, the MF velocity coin-
cides with the velocity of the center of mass of a set of
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independent motors, with N—1 of them free and one loaded
with the total force.

Similarly, the MF ansatz implies that, at a given speed, a
motor cluster is exerting a total force Fy, which is N times
the force of a single motor at the same speed:

FNE(V) = NF (V). (10)

We call this equation the condition of exact extensivity of the
force.

With regard to the collective efficiency of motor clusters,
the MF ansatz also yields simple relations, such as the exact
extensivity of the reaction rate, ri* (F)=Nr,(F/N), which in
turn reduces the collective efficiency of N motors to that of a
single motor with its share of the force, that is,

v (F) = 7,(FIN). (11)

Consequently, within MF the efficiency at a given velocity
7(V) does not depend on the number of motors. Motors do
cooperate in the sense that they add their forces to maintain a
certain velocity, but there is no gain in efficiency by working
together. In the biological context this means that, at a given
speed, the work obtained per each hydrolyzed ATP molecule
is fixed regardless of N.

2. Criteria of validity of the mean-field approximation

The validity criteria of the MF approximation involve
both the type of motor-motor interactions and the strength of
the noise. Here, we will restrict the discussion to the two-
motor problem, but the extension is trivial. The general cri-
terion for the validity of MF imposes conditions on the mean
value &=(&) =(x,—x,) of the distance between motors & and
its fluctuations. The equation for the relative coordinate can
be written as

)\ét:_ U{(xl’t)-" Ué(XZ’t)_ZW,(g)_F"'gr(t)» (12)
with
(GO E(t)) = 4kpTN 56t — 1'). (13)

For repulsive interactions, the scale & is fixed by the balance
between the repulsive force and the effective attraction asso-
ciated to the term —F due to the unequal loading. The MF
ansatz is expected to be valid if for the typical scale of varia-
tion of ¢ the interaction force between motors does not
change significantly. If the noise is weak, this poses a con-
dition on the potential. In fact, in this limit &; is given by the
minimum of the effective potential 2W(&)+ F¢, and the force
between motors W'(§) will be approximately constant
around the value —F/2 provided that the minimum of the
effective potential is sufficiently flat at the scale € where
correlations due to the terms Uj(x;,#) and Uj(x,,t) are built.
This yields the condition €|W"(&)/W'(&,)| <1, where &, de-
pends on F through the condition =W’ (&;)=F/2. Obviously
we are also implicitly assuming that &,> €. For a potential
with an exponential tail of range A, the conditions for the
second derivative of the potential and for the range of inter-
action are the same and reduce to A>¢ and A>o. For
hard-core repulsion, however, the condition for the smooth-
ness of the potential is not satisfied, so strong deviations
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from MF are to be expected in the weak-noise limit.

The validity of MF may also be achieved for sufficiently
large noise intensities. For a long-range repulsive potential,
we consider the estimation of the fluctuations {5&%) around
the minimum §&, of the effective potential 2W(€)+F¢ that
results from neglecting the terms —U{(x;,7)+ Uj(x,,) in Eq.
(12). This yields (5&2) ~2DN/ W"(&,). If we assume MF then
the average of —U|(x;,7)+ Uj(x,,1) is zero, so requiring that
2DN/W"(&,)>€? poses a self-consistency criterion for MF.
In the case of an exponential decay of W(&), and using
-W'(&)=F/2, the condition reads %%> 1, which is satis-
fied by a long-ranged potential even if the thermal energy
DX\ =kgT is not much larger than the energy scale F¥.

Finally, for a short-ranged repulsion we may still
reach the MF limit at sufficiently strong noise. In fact,
for hard-core repulsion with strong noise, most of
the time the motors are not in contact, so if we replace
=U}(x1,0)+ Uj(x,,0)—F with its average, which reduces to
MV, (F)-V,(0)]=-\NAV(F) when motors do not interact,
then the separation between motors by entropic repulsion is
distributed exponentially with a decay length 2D/AV(F). A
self-consistency criterion for MF can thus be obtained by
imposing this length to be larger than ¢, that is,
2D/CAV(F)>1.

In situations that combine finite noise strength and finite
potential range it is not simple to estimate a priori the valid-
ity of the MF approximation. As a general rule, MF may be
achieved by increasing either the noise strength or the range
of the repulsive potential, but the convergence to the MF will
be nonuniform, i.e., dependent on F. In Sec. III C we explic-
itly address this F-dependent convergence in an illustrative
example combining a hard-core plus an exponential tail with
finite noise intensity.

3. Classification of cooperativity

The naive collective behavior predicted by the MF theory
may be called “neutral cooperativity.” As already mentioned,
motors do cooperate in the sense that they simply add forces
to the cluster, but there is no gain in the collective efficiency.
For the original problem, however, MF will not hold in gen-
eral, and significant deviations from its predictions are ex-
pected. Remarkably, as reported in Ref. [25], typical devia-
tions from the MF equalities happen to be in the direction
where cooperativity is enhanced, that is,

Vy(F) > V,(FIN), (14)
Fy(V) > NF(V), (15)
ry(F) < Nr|(FIN). (16)

These three conditions are not strictly equivalent in general,
but they do usually occur together except for very special
cases. As we will see in Sec. V, the reaction rate ry is appro-
priate to quantify the degree of coordination of motors. One
may define a compact criterion for “enhanced cooperativity”
through the condition for the efficiency
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ny(F) > 7,(FIN). (17)

Remarkably, as we will see, the enhancement of cooperativ-
ity can be quantitatively very strong in some parameter re-
gimes, typically for weak noise. On the contrary, we will also
see that the opposite inequality happens very rarely, typically
for very narrow ranges of parameters. Furthermore, when-
ever cooperativity is reduced, the deviations from MF are
quantitatively small. The generic scenario for motors based
on a Brownian ratchet mechanism is thus that of enhanced
cooperativity. That is, when a force is applied to one of them,
other motors team up to work out more efficiently than they
would do if separated. In the biological context, this means
that there will be a net gain of mechanical work for each
molecule of ATP that is hydrolyzed.

D. Exact solution of the one-motor (MF) problem

For further reference we obtain here some exact expres-
sions for the single-motor problem, which yield automati-
cally the MF approximation to the N-motor problem with the
substitution F— F/N. It is useful to solve the minimal model
that exhibits the simplest possible explicit expressions for the
different observables, in particular for the velocity-force and
efficiency-force relations. For the minimal model defined in
Sec. IT A, in its fully asymmetric version (a=0), the stall
force and the velocity at zero load take a very simple form
that we will use as a reference and for normalization pur-
poses. They are both independent of noise strength D and
read, respectively [25],

Fl=\v min{l,i}, (18)
o= (19)

If the noise is not neglected in the U, state then the above
results correspond to the weak-noise limit.

Note that the velocity at zero load remains finite at
D=07" due to the fact that a=0. These results can be easily
obtained from simple arguments, taking advantage of the
constant decay time. Under these conditions, the exact
velocity-force curve for the minimal model with arbitrary a
can be obtained. The general expression and its derivation
are given in Appendix A. For the particular case of a=0, in
terms of the dimensionless force, f=F/(\v), it takes the
form

V() =o(1 - p— 2 (20)

a+@(f)’

where

1 « f *
# = =3~ ar S expl- BlkrafV]

NTJ0 k=—o0
(21)

The explicit calculation for the excitation rate reads
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o YL
rl(F)—€(1 f)a+¢(f), (22)

so the efficiency can then be expressed as

(¢
)= D) (23)
)

An alternative expression for ¢(f), which is convenient for
the case of large B is

o) = %[erfc(aﬁf) + 3 ertel Bk + )
k=1

—erfc[ Bk - af)]}:| ) (24)

In the weak-noise limit (8> 1), the velocity-force curve may
thus be approximated for a nonvanishing force by taking
#(f) = 3erfc(aBf). In this limit we have

_ erfc(aBf)
VI(F) = o(1 s exfolagy) (25)
1 Ft
7(F) = EerfC(a,Bf)E- (26)

III. REPULSIVE INTERACTIONS
A. Enhanced cooperativity for excluded volume interactions

To study the cooperative effects of the N-body problem
we start by considering the simplest case of a hard-core re-
pulsive potential. For practical reasons it is customary to
model a hard-core repulsion of range o using a Lennard-

Jones potential,
12 6
vomsd (3 -5 e

for £< 264 and zero, otherwise. A new dimensionless pa-
rameter

(28)

a

I
SIS

is introduced in the problem, which is the size of the motor
relative to the track period. The parameter € is an auxiliary
parameter that must be chosen large enough to ensure that
the interaction is effectively hard-core for é<o.

For the fully asymmetric model (a=0) in Ref. [25] it was
shown that enhanced cooperativity occurs for an arbitrary
number of motors N, except for very narrow windows in
which o is commensurate with €. Here, we report further
evidence of this conclusion extending it to the case a # 0.

1. Mechanism of enhanced cooperativity

The basic explanation for enhanced cooperativity was al-
ready sketched in Ref. [25] and relies on the fact that the
two-motor configurations endow the leading motor with an
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additional mechanism to advance to the next ratchet site
which is not noise dependent. In fact, the trailing motor can
push the leading one beyond the ratchet barrier when the
former is sliding down the ratchet potential (state U,) and the
leading motor is in the diffusive state (U,). This situation
happens relatively often if the leading motor is sufficiently
loaded since then the velocity difference between the loaded
and the unloaded motors brings them quickly together. The
fact that the motors are unequally loaded is thus crucial for
this mechanism to take place (at F=0 the two motors be-
come independent and there is no cooperative effect). The
opposite crossed-state configuration, with the trailing motor
in the diffusive state and the leading one in the deterministic
state, contributes unfavorably with respect to MF, but the
statistical weight of this configuration is usually not domi-
nant. Enhanced cooperativity is thus expected to be quanti-
tatively more pronounced whenever the noise mechanism is
very inefficient for the leading motor to advance, while still
sufficiently effective for the unloaded motor to do it. That is,
when there is a big difference between the velocities of the
free and the loaded motors. For a=0 the effect is most dra-
matic in the limit of small noise strength 8> 1. In fact, even
though the stall force is noise independent, from Egs. (20)
and (25) it is clear that an apparent stall force may be defined
when the velocity-force curve crosses over to its fast decay.
From the condition afBf~1 it follows that the apparent stall
force for a single motor may be defined as F,,=\(4D/7)"%.
For forces larger than that, the MF analysis predicts veloci-
ties that fall off as (F,,/ F)exp(-F/F,,). Note that the veloc-
ity of the trailing motor and the contribution of its push on
the leading one are deterministic, which are of order 1 with
respect to noise strength, O(DP), while the leading motor
velocity is of O(VD exp[—1/VD]). Therefore, the ratio of the
cluster velocity to the MF velocity goes to infinity in the
limit of vanishing noise. For a finite asymmetry of the ratchet
potential, a # 0, even though the ratchet effect becomes in-
effective for weak noise, the enhancement of cooperativity is
even more dramatic, in relative terms. The picture is the
same for decreasing noise up to VD7~ a, that is, when the
typical diffusive length in the U, state is comparable to a,
and the trailing, unloaded motor can still advance with a
significant velocity. For even weaker noise, the ratchet effect
becomes ineffective but the velocity of the motor pair re-
mains necessarily on the order of the velocity of the single
motor at zero force, at least for a range of small forces. The
single-motor velocity at zero force now decreases to zero but
not as fast as the single-motor velocity at finite force.

In Fig. 2 we plot some typical cases where moderate en-
hanced cooperativity can be visualized, in particular includ-
ing cases with @ # 0 (more dramatic examples can be found
in Ref. [25]). A measure of the relative enhancement of co-
operativity at a given force is expressed by the ratio

Vo(2F)  V,(2F)
iR Vi(F)

Ry(F) = (29)

For B>1 we have, for a=0,
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FIG. 2. (Color online) Velocity-force curves for N=1 (circles)
and N=2 (squares) with hard-core interactions. Curves for N=1
coincide with the MF approximation of N=2. For all curves
a=1/2, a=1/10, and d=7/40. Lower pair of curves (solid lines):
B=12.65; higher pair (dashed lines): B=4. Normalization values
V(])(O) and F? are obtained from Egs. (A5) and (A8). Inset: logarith-
mic dependence with 8 of the ratio between velocity at zero load
and the velocity at F’ *:%FS for a single motor. Each line corre-
sponds to a different value of a (dashed line: @=0). In all cases,
a=1/2.

_
VIO 2BNT

RO~y ®  Ur2a-p°

(30)

and for finite a,

2B\ (1 - a){l + a( - afﬂ
of

Ro(F) ~ V,(0) _
2 V,(F) (1+2a)(1-y)
X oBaf(l +al(1 = aplaf)?, (31)

in both cases diverging in the weak-noise limit. In the above
expressions we have assumed that the numerators remain on
the order of V,(0) in the weak-noise limit. This is found in
the simulations and is the nontrivial point to ensure in order
to prove rigorously the phenomenon of enhanced cooperat-
ivity in the weak-noise limit (see Sec. III B). The above ra-
tios are plotted in the inset of Fig. 2, illustrating that the
enhancement of cooperativity diverges even more strongly
for finite a. We may thus conclude that the more inefficient
the single motor performance is, the more enhanced is the
motor cooperativity. Similar ratios can be defined for the
efficiency. In fact, single motors become less effective when
noise is weak and/or when the asymmetry of the ratchet is
less pronounced. Changes in both directions imply that the
motors tend to benefit most from motor-motor interaction.

2. Mechanism of reduced cooperativity

In Ref. [25] it was found that enhanced cooperativity was
generic and essentially independent of o except for a very
narrow range of o. For the two-motor problem, the most
unfavorable situation was when o= {. The reason why this
case leads to a degree of cooperativity that is worse than MF
(reduced cooperativity) can be understood in simple terms.
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FIG. 3. (Color online) Nonmonotonic velocity-force curves with
purely excluded volume repulsion with different values of &, for the
minimal model; «=0.75, 8=6.3, and a=0.

One must first realize that when two motors are in contact
and in the same state, they do behave exactly as MF (the
velocity is that of a single motor with F/2). If o=¢ the two
motors would follow the same path synchronously except for
fluctuations introduced by noise. Consider now the simulta-
neous excitation of the two motors to the U, state. The pres-
ence of a certain amount of noise implies an entropic repul-
sion that will force the leading motor to step forward in the
next site, while the trailing motor will step backward. The
motors will then loose contact for a finite time until they
meet again. During this time, the velocity of the leading
motor is smaller than the MF prediction. On the other hand,
note that the pushing mechanism that explains enhanced co-
operativity is less effective owing to the relatively high prob-
ability of the trailing motor to be pushed back by noise when
it is at the high part of the potential U,. Note that, in the
above mechanism of reduced cooperativity, noise plays an
essential role. By increasing the noise strength, the narrow
dips in the velocity-o plateau get wider and less pronounced.
In Sec. VI we will give examples (see also Ref. [25]) and
will also show that introducing a finite a has a similar effect
than increasing the noise strength.

The above commensurability effect may be present as a
reduction in cooperativity without necessarily implying a
performance below the neutral cooperativity of MF. For in-
stance, for a given motor cluster, changing the mean motor
separation may be sensitive in regions where there is such
commensurability. An interesting example is the possible ap-
pearance of nonmonotonic velocity-force curves even for
purely repulsive interactions, as shown in Fig. 3. In those
examples, for small forces commensurability leads to inef-
fective cooperativity, while increasing the force causes the
two motors to become closer to each other and abandon the
region of commensurability. In this case the effect is strong
enough to actually increase the joint velocity. We see that in
an intermediate range of forces, the behavior changes from
almost MF to high cooperativity, as the external load is in-
creased. Nonmonotonic velocity-force curves associated to
the effect of the external force on the mean motor separation
were reported for the case of attractive interactions in Ref.
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FIG. 4. (Color online) Convergence of the velocity-force curves
with the number of motors N for hard-core interactions. For all
curves, a=1/2, =4, a=1/10, and 6=7/40. Cooperativity is en-
hanced with an increasing number of motors until it saturates.

[25] and will be discussed for attractive forces in Sec. IV B.
The above result illustrates the complex dynamical interplay
between the motor size and the external force, which is most
clearly manifest in the vanishing-noise limit (see Sec. III B
and Ref. [39]).

3. Convergence with N and force transmission

Enhancement of cooperativity persists for increasing N.
Typically it keeps increasing but with a weaker dependence
on N for larger numbers of motors. In Fig. 4 we show a
typical case, where the velocity-force curve exhibits a uni-
form and monotonic convergence with N to a limiting curve.
A more remarkable case is shown in Fig. 5. This corresponds
to the particular case in which o is chosen in the very narrow
range where the two-motor problem exhibits reduced coop-
erativity. Remarkably, even in this exceptional most unfavor-
able case, adding more motors contributes again to enhance
cooperativity, emphasizing the really exceptional nature of
the case with reduced cooperativity.

1 T
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FIG. 5. (Color online) Velocity-force curves showing reduced
cooperativity for N=2 but then progressively enhanced cooperativ-
ity for increasing N; a=1/2, B=4, a=1/10, and ¢=7/10.
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The convergence for large N was discussed in Ref. [25]
for the case a=0. An important conclusion was that the lim-
iting curve for large N is a limiting function of F/N, imply-
ing that the force becomes extensive with the number of
motors, in contrast to the result obtained by the discrete
model of Ref. [17] where, for any finite force, the velocity-
force was shown to converge to a function of F instead of
F/N. The extensivity of the force reflects the existence of
direct force transmission between motors and is a relevant
point to assess in any model with large numbers of motors
pulling on soft cargoes. It was assumed, for instance, in the
simulations of [18]. For finite a, the large-N asymptotic may
be more subtle, as new nontrivial phenomena take place (see
Sec. VII).

B. Proof of enhanced cooperativity: Exact results
for the two-motor problem

Since the mechanism of enhanced cooperativity is of de-
terministic origin, it makes sense to pursue an analytical un-
derstanding of our model in the weak-noise limit. This can
be done all the way to D=0" in the fully asymmetric case
a=0 (we assume the limit Sa— 0 taken before S— =), in
which a single motor has still a finite velocity at zero force.
In this limit we can rigorously prove the existence of en-
hanced cooperativity in some parameter regimes.

We first address the inexistence of reduced cooperativity
in the above limit by proving the inequality

Vn(F) = Vi(FIN), (32)

which is a weaker condition than Eq. (14). Since in the
weak-noise limit V;(F)=0 for any finite F, then it suffices to
proof the non-negativity of the cluster velocity. A necessary
condition of non-negative velocity of a single motor is obvi-
ously F=MAv. On the other hand, it is also necessary that
Fr/N<{, so that when receding in the U, state it does not
reach the ratchet period behind. Therefore, a sufficient con-
dition for the velocity of a single motor to be non-negative
for the full range of forces 0=f=1 is a=1. This result can
be generalized to clusters of N motors, for which the suffi-
cient condition for non-negative velocity is again a=1 for
the full range 0=f=N. The proof is simple if one avoids
possible effects of commensurability, so the conclusion holds
at least for all irrational values of o/¢.

In order to prove the actual occurrence of enhanced coop-
erativity [the strict inequality Vy(F) >V (F/N)] for D=0" it
suffices to show that Vy(F)>0 for finite F. This is not so
simple in general, but it is possible to find parameter ranges
where this can be easily done. The conclusion, however, is
claimed to be valid in much broader ranges of parameters
than those for which a simple proof is available. In Appendix
B we sketch the proof that, for N=2, the simple condition

! <Z< 1 (33)

—a<— -«

8 €
is a sufficient condition for enhanced cooperativity for the
whole range of forces 0<<f=1. Although this condition
holds for relatively small values of «, enhanced cooperativity
is also found for larger values of this parameter. A particular
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TABLE 1. Table of exact values for the two-motor velocity for
the case a=1, =1/3 in the limit D=0% for a particular set of
values of force. Note that the dependence is nonmonotonic, reflect-
ing the complex geometry of the actual limiting curve, with a large
number of discontinuities and fractal structure, as discussed else-
where [39].

1 1 1 2 5
f 0 4 3 2 3 6 1
v 1 21 35 L 28 35 1
v 3 86 131 308 117 156 6

case that can be easily calculated for arbitrary N and « is that
of the force F*=(N-1)\v, for which we obtain exactly

v/IN
142«

1
VN(F7) = = X]VI(O) >0, (34)

again with the exception of values of o commensurated with
€. Remarkably, for N=2 it can be shown, with the help of
graph theory, that V,(F) can be exactly determined in the
limit of vanishing noise for any F in very broad parameter
ranges. The calculation must be performed separately for
each value of F, and it gives rise to rather complex geometri-
cal properties of the velocity-force curve, including large
number of discontinuities and fractal structure. For the
present discussion it is relevant to stress that V, is positive
(except possibly for windows of force with zero velocity).
These results will be proven and discussed in detail else-
where [39]. As illustrative examples of nontrivial exact solu-
tions we report without proof several values of V,(f) for the
case of a=1 and o={/3 in Table .

Similarly, in some parameter regimes it is possible to find
relatively simple positive-defined lower bounds of V,(F) that
prove enhanced cooperativity for a continuous range of
forces. For instance, for 0<f<1 and with the condition
1—;fcu< 7, it can be shown that [39]

v(l =14 -
o3 =201+ a(l -4+

Vo (f) > 0. (35)

We conclude this section by emphasizing the remarkable fact
that the joint velocity of the motor pair is finite for vanishing
noise and against a finite external force. The system is thus
able to perform a finite mechanical work by combining mo-
tors that are unable to produce any work at all at any finite
force if taken separately. The fact that the combination of
powerless motors is capable to produce a finite power in the
limit of vanishing noise illustrates that another mechanism of
directed motion, which is essentially deterministic, is at
work. This mechanism, isolated here in the limit D=07, is at
the root of the enhancement of cooperativity in the general
case, where it coexists with the ordinary noise-driven ratchet
mechanism. A similar phenomenon where directed motion is
generated in the absence of noise in a two-state ratchet is
known when motors are rigidly coupled. Nevertheless, we
stress that in our case the motors have only excluded volume
repulsion, that is, there is no attraction that can be invoked to
form a motor assembly and to allow a leading motor to pull
on a trailing one. The motor association here is purely dy-
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FIG. 6. (Color online) Convergence to mean-field behavior due
to long-range interactions. An increase in the characteristic length
of the long-range potential A destroys the enhanced cooperativity of
the hard-core case, for small forces. See discussion of the crossover
force in the text; @=2/3, =6.68, a=0, and 0=0.2.

namical, originating from the fact that the external force is
asymmetrically applied.

C. Convergence to mean field

As it has been previously explained, the MF behavior can
be obtained as a limiting case for sufficiently long-ranged
repulsion or for sufficiently strong noise. We first address the
convergence to MF when the range of the interaction poten-
tial is increased. We add an exponential tail of the form

W.(8) = kAe A, (36)

for all ¢ to our hard-core potential, where « is the effective
strength of the tail and A is its characteristic range of the
repulsive interaction. In Fig. 6 we show the convergence to
MF at fixed noise strength, in a case with sufficiently weak
noise, so that for short-range interactions we have strong
cooperativity. Notice that the convergence to MF is not uni-
form and occurs first for smaller forces, consistent with the
criteria proposed in Sec. II C 2. The force F.,,,, at which the
MF curve starts to cross over to the hard-core one can be
obtained by a simple argument. As long as the repulsion is
dominated by the exponential tail, the MF curve is supposed
to hold. In the case of two motors, this covers forces for
which F/2 is smaller than the maximal slope of the expo-
nential tail (for £<2"%¢). Similarly, for arbitrary N we have
FC,(,N:—NWL(Z”%'):NKe‘zl/G”/A. For larger forces the mo-
tors start to feel the hard-core and gradually enhance coop-
erativity until the hard-core result is reached.

Next we check the convergence to MF by increasing the
noise strength while keeping the hard-core repulsion. Results
are shown in Fig. 7 where we plot the relative deviation from
MEF behavior. In the limit of strong noise the deviation from
MF tends to vanish. In this limit, the single-motor velocity-
force curve and therefore the N-motor curve are linear and
take the simple form
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FIG. 7. (Color online) Cluster velocity decays to mean-field
behavior for increasing noise strength (decreasing B); a=0.37,
a=0.1, and 0=0.3.

VN(F)=V1(0)(1 _NLF)’ (37)

where F is the single-motor stall force. The above expres-
sion is a quite common assumption in many studies involv-
ing motor cooperativity. While this relation may be justified
for rigid motor assemblies, for motors pulling on soft cargoes
it is only achieved in the strong-noise regime.

IV. ATTRACTIVE INTERACTIONS
A. Strongly coupled motors

Although our main focus in this paper is on weakly
coupled motors (nonbinding potentials), in the context of at-
tractive interactions it is interesting to recall first the case of
strong coupling, close to a rigid assembly of motors, a case
that has already been studied extensively for similar models
[9,40-42] and that is relevant to the subsequent discussion.
To model a strong elastic coupling we use a harmonic poten-
tial of the form WS(§)=%/€(§—0')2, where k is sufficiently
large. From the equilibrium relation ((é-0)?)¢q=kpT/k we
choose k such that ((§—0)?)q<¢* and express it in the di-
mensionless form

_ - 0)? k
k= <(§ f‘;’) >e =kL€Z, (38)

which is an indicator of the relative deviations from the equi-
librium position.

One of the known results of the rigid coupling case is that
the velocity of a cluster at zero force is significantly higher
than the one of a free motor. The cooperativity acts now in
both ways, not only the motor behind pushes one ahead to
the next period, but the one ahead also pulls on the trailing
one. As long as motor separation and track periodicity are
incommensurate, the velocity increase at zero load soon be-
comes independent on the number of motors and saturates.
In Fig. 8 we summarize the qualitative scenario for a repre-
sentative case.
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FIG. 8. (Color online) Velocity-force curves for rigid coupling
(rc). Hard-core (hc) curve for two motors is also shown (squares).
Although the free motor velocity now depends on the number of
motors, it quickly saturates; a=0.5, B=4, a=0.1, 6=0.235, and
k=107

B. Weak attractive coupling

The weak attractive coupling between motors is intro-
duced using the full Lennard-Jones potential (27). This po-
tential is nonbinding in the sense that, with this interaction,
the mean distance between two particles diverges, for any
noise strength. Similarly, a particle can only be trapped tran-
siently in the well and will escape from it to any distance in
a finite time. Since we are interested in weakly attractive
interactions, the depth of the well will be chosen so that the
characteristic lifetime of a particle pair is relatively small. If
the particles are motors of our ratchet model, this means that,
at zero load, thermal fluctuations can break the motor cluster
in relatively short time scales. In this way the spontaneous
formation of a cluster is not attributed to the attraction but to
the kinematic effect associated to the uneven distribution of
the load, as before.

Under these circumstances, the joint velocity of a set of
motors at zero load is the same as the free motor one, like in
the hard-core case. As soon as the leading motor is subject to
an external load, a stable cluster will form. The key differ-
ence with respect to the purely repulsive case is that now the
leading motor can pull on the trailing motor while the former
is sliding down the potential. To the extent that the cluster
can be kept compact, the behavior will be reminiscent of that
of a rigidly coupled assembly. Remarkably, the larger the
external force the more compact and stable will become the
cluster. Therefore, we may find that increasing the external
load the joint velocity of the cluster does increase. This type
of cooperative nonlinear response was first reported in Ref.
[25] for the fully asymmetric case, a=0. This increase with
the load must eventually be reversed for even larger forces,
giving rise to a nonmonotonic behavior of the velocity-force
curve. Here, we generalize this phenomenon to arbitrary a. A
typical example is shown in Fig. 9.

The nonmonotonicity of the velocity-force curve is asso-
ciated with a plethora of new dynamical phenomena. Con-
trary to all previous cases, now the number of motors in the
cluster is not determined by the number of available motors,
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FIG. 9. (Color online) Velocity-force curves for weak attractive
coupling (wc) and N=2,3 motors. Comparison with the hard-core
(hc) case is also shown (squares). The horizontal dashed line indi-
cates the maximum velocity of a single motor. The presence of an
attractive force between the motors introduces a nonmonotonic be-
havior of the velocity-force relationship; a=0.18, =14.1, a=0.1,
and 0=0.2.

but it is dynamically selected by the system. In particular, if
we assume that there is an infinite reservoir of motors behind
the cluster, no matter how large the load on the first motor is,
it will keep recruiting motors up to the point where the motor
cluster surpasses the velocity of a free motor. At that point
the cluster will escape from the motor reservoir. This effect
can be seen in Fig. 10. Similarly, if we progressively increase
F, every time the cluster velocity decreases below the free
motor velocity (dashed line) a new motor will be recruited if
available. Upon increasing the force, the cluster velocity will

4
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F/F,

Vn(F)/V1(0)
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FIG. 10. (Color online) Velocity-force curve for weak interac-
tion for N=5 motors (black dots) with the parameters of Fig. 9. Due
to commensurability effects the cluster of five motors becomes
highly compacted and can advance much faster than the four-motor
cluster. Squares: velocity-force curve for a five-motor cluster bound
with a rigid coupling for three values of the stiffness

(k=10"*, 1073, 1072 from left to right). We can clearly see that the
behavior of the weak case approaches the one of rigid coupling.
Also, on the rigid coupling, a smaller stiffness increases the overall
cooperativity of the cluster. Inset: the full velocity-force curves for
the rigid coupling (same three curves).

PHYSICAL REVIEW E 82, 061903 (2010)

increase again until it reaches a maximum value and will
decrease until the next recruitment. In the neighborhood of
the points where the curve bounces up, hysteretic phenomena
takes place in the form of a transient bimodality of the ve-
locity distribution, as reported in [25], owing to the finite
time that is required to recruit a new motor (for increasing F)
or to release one from the cluster (for deceasing F). Remark-
ably, for any given external force, no matter how large it is,
in the presence of a motor reservoir, the system will self-
organize in a stable number of motors which will be actually
advancing with a velocity that it larger or, at worse, equal to
the free motor velocity (and therefore it will escape from the
motor reservoir). The effect of a relatively small attraction
between motors thus introduces a qualitative change in the
dynamical scenario and implies an even more pronounced
enhancement of motor cooperativity (see Sec. V below).

If, on the other hand, the number of available motors N is
fixed, the curve of Vy(F) coincides exactly with V,(F) for
the first bump (the force range where cluster of more than
two motors are metastable, and only the two-motor cluster is
stable), with that of V;(F) for the second bump (the three-
motor cluster is stable, and a two-motor cluster recruits a
third motor) and similarly up to the N—1 bump. Only after
that it decreases below the free motor velocity.

This type of bouncing velocity-force curves was first re-
ported in Ref. [25] for the fully asymmetric ratchet a=0. In
that case, the successive maxima of the curve followed a
decreasing envelop. Remarkably, for finite a, additional phe-
nomena come into play. As shown in Fig. 10, a sudden in-
crease in some of the bumps may occur, due to commensu-
rability effects between o and ¢, once a second length is
introduced in the problem. In fact, when a multiple of the
mean motor separation is close to a multiple of €, the system
becomes highly sensitive to being below or above this reso-
nant condition. In the former case, the cluster is more com-
pact since the motors in the extremes will typically lie at
positions of the ratchet of opposite slope, implying a system-
atic compressive force that keeps the cluster more compact.
Therefore, in that case the motor will be more cooperative.
This is the case shown in Fig. 10. By slightly changing o,
one may reach the case in which the characteristic cluster
size slightly exceeds a multiple of the ratchet period, imply-
ing the opposite effect, as one motor will become loosely
associated to the cluster, thus implying a significant loss of
cooperativity. In Fig. 11 we show how dramatically the re-
bound associated to the fifth motor completely disappears,
while that of the fourth is significantly modified.

In Fig. 10 we also plot three curves corresponding to
strong elastic coupling of motors for the case of five motors,
for different degrees of rigidity of the harmonic interaction
between motors. Notice that the actual curve is remarkably
sensitive to the rigidity and gives actually more effective
cooperativity for softer coupling. The curve of five motors
with our weak coupling is bound by one of the softer har-
monic couplings, but actually surpasses the case of the high-
est rigidity, indicating that a cluster with weak attractive in-
teraction, when a sufficiently high load is applied, behaves as
a compact group of mutually bound motors with a relatively
loose elastic coupling. We also observe that a certain degree
of fluctuations of the relative positions of motors in an oth-
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FIG. 11. (Color online) The same velocity-force curve from Fig.
10 (squares) compared with the same curve for a different s (dia-
monds). A small change in the motor size completely removes the
effect of the last motor. Previously the recruitment of the fifth motor
created a huge increase in velocity; now its recruitment has no
impact on the velocity. Notice how the N=4 (circles) and N=5
(diamonds) curves are almost the same now. In this case (diamonds)
due to commensurability effects the fifth motor never attaches to the
other four. The minimum distance between the fifth and the first
motors is such that the asymmetric part of the ratchet is continu-
ously breaking the cluster.

erwise compact cluster does actually favor cooperativity (see
also Sec. VII) and may outperform the case of strictly rigid
coupling.

V. COLLECTIVE EFFICIENCY AND MOTOR
COORDINATION

The collective efficiency is also an important quantity to
characterize the cooperativity of motors and a convenient
one to define the collective performance, as discussed in
Sec. 11 C 3. We recall that, according to our definitions,
the MF reference case corresponds to the condition
F(F)=7,(F/N). For short-range potentials and in the limit
of weak noise, the relative enhancement of the cooperative
efficiency with respect the MF prediction becomes arbitrarily
large, on the basis of the asymptotic analysis of Sec. II D,
since the single motor problem itself becomes very ineffi-
cient. Nevertheless, for moderate values of parameters a sig-
nificant increase efficiency is found generically. Examples
for a=0 were already reported in Ref. [25]. An example for
a+#0 is shown in Fig. 12 for purely hard-core repulsion,
where we normalize to the maximum of the single-motor
efficiency curve 7"*=max[7,(F)]. The comparison with the
curve N=1 gives directly the increase in efficiency with re-
spect to MF.

In Ref. [25] it was also shown that, if a weak attractive
interaction was added to the hard core, the increase in effi-
ciency is even more pronounced. For a # 0 this is also the
case but the situation becomes more complex due to com-
mensurability phenomena such as those described in the pre-
ceding section and in Sec. VI (results not shown).

An upper bound of the efficiency at a given force can
actually be determined that defines the theoretical limit to
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FIG. 12. (Color online) Efficiency curve for hard-core interac-
tions. The efficiency of the cluster increases with the number of
motors until it starts to saturate; a=1/2, B=4, a=1/10, and
o=17/40.

cooperativity within the two-state model at hand. In fact, if
we consider a set of N motors with velocity V), the reaction
rate has a lower bound of the form

ry(NF) > r = NVy/€ (39)

which corresponds to each motor requiring only one excita-
tion to advance one period. This corresponds to an optimal
limit in which the motors move in a highly coordinated
mode. Consequently, an upper bound of the efficiency of N
motors loaded by a force NF is given by

F¢
(NF) < y"(NF) = e (40)
M

which does not depend on N.

In general the efficiency increase combines an increase in
the exerted power FV) and a reduction in reaction rate. The
latter is typically dominant and measures a certain increase
in motor coordination, which in the case of large clusters
involves a remarkable synchronization of the individual mo-
tors (see Sec. VII). The effect on the reaction rate can be
seen in Figs. 13 and 14, where the rate per motor is plotted
(parametrically on F) against velocity for weakly attracting
interactions (with a=0) and hard core (with a #0), respec-
tively. For weak attraction, the curves in Fig. 13 refer to the
range of velocities from the corresponding velocity-force
curves of the type shown in Fig. 9 for weak attraction, all the
way to zero (clusters with fixed N). All curves in Fig. 13 are
qualitatively similar, but the overall decrease with the num-
ber of motors is remarkable. A significant difference between
the N=1 case and the rest is the sign of the slope in the right
end. For N> 1 the rate per motor does decrease for increas-
ing force (moving from right to left along the curve). This
reflects the increase in coordination of the motor movements.
For a single motor, instead, an increase in the force decreases
the probability of stepping forward, and hence it decreases
the velocity and increases the excitation rate. Note also that
in the regime of large velocities, the curves for N>1 ap-
proach the asymptotic line of the theoretical minimum of the
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FIG. 13. (Color online) Excitation rate per motor

r(F)=ry(F)/N along a complete velocity-force curve trajectory
with weak attraction, for the fully asymmetric case. We can see a
dramatic change in the rate with the introduction of more motors.
The rate approaches its minimum value (given by the straight line)
for high velocities; a=0.15, f=14.1, a=0, and 6=0.2.

excitation (at a given velocity). Therefore, at maximal veloc-
ity the motion becomes optimally coordinated (one
excitation, i.e., one ATP molecule, per step) and essentially
ballistic.

For the case of purely hard-core repulsion, the situation is
qualitatively different because the maximal velocity does not
occur at finite but at zero force. This is the reason why the
reaction rate per motor behaves differently in the extreme of
high velocities. In any case, for the intermediate range of
velocities and forces, the decrease in reaction rate per motor
for increasing N is remarkable.

When we consider that behind the cluster there is a motor
reservoir, as for the tube pulling experiments [21], the ener-
getic efficiency behaves also qualitatively differently de-
pending on whether or not a weak attraction is present. For
purely repulsive interactions, the cluster velocity is bound by

1= N=92 — N -
5-s= N=8 —¢ N

3
1

r(F)¢/Vi(0)

0 0.2 0.4 0.6 0.8 1
VN (F)/V1(0)

FIG. 14. (Color online) Excitation rate per motor for hard-core
interaction and finite asymmetry. Although the rate does not ap-
proach its minimum value like in the fully asymmetric case, the
strong reduction with the number of motors is still present;
a=1/2, B=4, a=1/10, and a=7/40.
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FIG. 15. (Color online) Maximum efficiency curve for hard-core
interaction. The number of motors is chosen to assure maximal
efficiency. Vertical dashed lines mark the addition of one motor to
the cluster. The efficiency curve for a single motor is also shown
(black line); a=1/2, B=4, a=1/10, and a=7/40.

the velocity at zero load Vy(0)=V,(0). Accordingly the mo-
tors behind the cluster will always catch up, so the number of
motors in the cluster in not bound. For a fixed force F, the
cluster velocity then tends to V;(0) and the total excitation
rate diverges with N, implying a vanishing collective effi-
ciency. However, in this case it is illustrative to consider the
efficiency-force curve if we leave the number of motors as an
adjustable parameter to maximize the efficiency at any given
force. This yields the plot of Fig. 15, where the dashed ver-
tical lines signal each addition of one motor to the cluster.
Therefore, with the right choice of N, the efficiency-force
curve is monotonically increasing and is potentially un-
bound, consistent with Eq. (40).

The situation is fundamentally different in the case of
weakly attracting motors as a result of the scenario described
in Sec. IV B. Since the cluster velocity typically surpasses
the velocity of the unloaded motors for a sufficiently large N,
the number of motors in the cluster is dynamically selected.
Accordingly, this self-regulating mechanism does not maxi-
mize efficiency but the cluster velocity. Nevertheless, as ar-
gued above, the cluster achieves very large efficiencies pre-
cisely when the velocity exceeds the free-motor one,
regardless of how large the force F' is. This is remarkable,
because in this arrangement each motor is moving at a ve-
locity that is higher than that of the free motor and is never-
theless capable to generate a finite power, since the force per
motor remains finite. Moreover, at the maximal velocity for a
given N, condition (39) is satisfied, thus implying optimal
coordination and ballistic motion, even with a reduced num-
ber of motors. In this optimal configuration, the motors push
and pull the others in a coordinated way, so that each motor
performs only one excitation at each site.

VI. EFFECTS OF COMMENSURABILITY

With any type of interaction, whenever a stable cluster is
formed, resonance phenomena associated to the commensu-
rability between the different length scales, €, a and the
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FIG. 16. (Color online) Velocity deviations with respect to mean
field (dashed line) as a function of the effective motor separation
o, for N=2 and the different interactions: squares for rigid cou-
pling (rc), diamonds for weak attractive coupling (wc), and circles
for hard core (hc). Commensurability effects are evident at "~ 1;
a=0.93, B=6.3, a=0.1, and F=1/4F,.

mean distance between motors may have strong and non-
trivial effects on the dynamics of the cluster. The mean
motor-motor distance is controlled by the parameters of the
interaction, but it also depends in general on the noise
strength through some entropic repulsion between motors.
For hard-core repulsion, the mean motor separation is
slightly larger than o and very weakly dependent on the
position of the motor in the cluster (see an example in Fig.
18 of Sec. VII). The simplest example of such resonances is
the mechanism of reduced cooperativity described in Sec.
III A 2, taking place for o={ in the case of hard-core repul-
sion. As proven in Sec. II D, this phenomenon requires the
presence of noise. Increasing a has a similar effect than in-
creasing noise strength in making the dips in the curve of
velocity vs o less steep and deep at the resonance. In Figs.
16 and 17, we compare this basic resonance in the cases of
hard-core repulsion, weak attraction, and rigid coupling
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FIG. 17. (Color online) Same as Fig. 16, but with different
parameters. Commensurability effects are still evident at &~ 1.
The asymmetric behavior of the curve for the weak interaction is
due to different mean lifetimes of the cluster; @=0.18, B=14.1,
a=0.1, and F=1/10F,.
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(strong elastic interaction, but not strictly rigid). We show the
deviation from MF (the dashed horizontal line) as a function
of the position of the minimum of the potential o™ normal-
ized by €. The degree of cooperativity is increasing, respec-
tively, and—except around the resonances—for the hard-
core and the rigid coupling cases the curve is very flat, that
is, independent of o. For the rigid coupling case, the curve is
periodic in o by construction and the resonances are more
sharp and pronounced. Changing o in the Lennard-Jones po-
tential, however, is not equivalent to a shift of the potential.
In the truncated case (hard core, with o*=2"%¢), the curve
remains nearly periodic, but in the weakly attractive the de-
pendence on o™ is clearly nonperiodic. Furthermore, it shows
a secondary peak that is progressively smoothed out at suc-
cessive periods of o*. This is a secondary resonance associ-
ated to the other length scale a.

For larger clusters, higher-order resonances whenever
multiples of the mean motor separation are commensurate
with multiples of the ratchet period will be possible and give
rise to rather complex dynamical behavior. A remarkable ef-
fect of such resonances has been discussed in Sec. IV B to
explain the results of Figs. 10 and 11, where a slight change
in o has a profound effect on the velocity-force curve when
a condition of resonance is crossed. In this case it is required
that a #0. The presence of the steep part of the potential
associated to finite ¢ may have in general an strong impact
on the inner structure of the cluster, and consequently on its
dynamics, for instance, implying a rather uneven distribution
of the average force supported by each motor in the cluster.
This leads naturally to additional phenomena that may hinder
cooperativity for large N, as briefly discussed in the next
section.

VII. DYNAMICS OF LARGE CLUSTERS
A. Cluster structure, force distribution, and synchronization

Our modeling allows us to investigate the inner structure
of the clusters, the force distribution among motors, and to
what extent the motion of motors is coordinated into syn-
chronous motion. We have seen that, with weakly attractive
interactions, small clusters may exhibit highly coordinated
motion. It turns out that for relatively large N, even with only
hard-core repulsion, the clusters formed by applying a large
force upon the first one become apparently rigid motor as-
semblies, with a roughly uniform mean separation close to o.
We may thus expect that the collective behavior must ap-
proach to some extent that of rigid coupling. In Fig. 18 we
plot the spatial probability distribution of motors in a cluster
for a representative example. The entropic repulsion is very
small since noise is relatively weak, so the peak of the tenth
motor is only slightly above 10&. The width of the position
peaks, however, is clearly dependent on the distance from the
first motor, with only the last few being significantly spread.
Under these conditions, the cluster structure is close to peri-
odic and apparently quite rigid.

It is also interesting to investigate how the total force is
distributed within the motors of a cluster. In studies of motor
cooperativity it is customary to make the assumption that the
motors have, on average, an equal share of the total force
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FIG. 18. (Color online) Probability density function for the
relative positions of the motors (Ax;=x;—x;) inside a cluster with
N=10 and hard-core interactions. Inset: zoom in on the last
three-motor distributions; F=N/2F;, «=0.18, f=14.1, 6=0.2, and
a=0.1.

F/N. This is relevant, for instance, to model the kinetics of
motor binding or unbinding, which in general is sensitive to
the applied force, as discussed in Ref. [18]. For the case of
a=0, we show some representative results in Fig. 19. We
find that, already for relatively small clusters, the time aver-
age of the total force acting on a given motor from the inter-
action with the other motors is indeed uniformly distributed
among motors. The only exceptions are the very few motors
at the end of the cluster in the case of repulsive interactions,
since then the last motors are only loosely attached to the
cluster. To the extent that the force distribution is uniform,
the value must be close to the equal share prediction of MF,
that is, F/N (slightly above for the case of repulsive interac-
tions). Remarkably, this does not mean that the cluster veloc-
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FIG. 19. (Color online) Force distribution along clusters of
N=8 and 12 motors for a=0 and F=N/4F,. Circles are for hard-
core interaction; the first six (ten) motors feel a force higher than
the MF value, and the last two feel a much smaller force since they
are not always attached to the cluster. Squares are for weak inter-
action; since the external force is strong, the cluster is stable and
each motor shares almost the same load. Although not obvious from
the force distribution, both clusters are highly cooperative. Other
parameters: a=0.15, 8=14.1, and 6=0.2.
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FIG. 20. (Color online) Force distribution for the different
curves of Fig. 11 for F/F;=2.6. Clear example of commensurability
effects on the force distribution. A small change in the motor size
(from circles to squares) creates a large qualitative change in the
force distribution inside the cluster. Removing a motor (diamonds)
moves the force distribution back to the previous form.

ity or efficiency is close to the MF prediction, since the val-
ues of the force do exhibit strong correlations, but suggests
that for the kinetics of motor detachment the assumption of
equal force share may be justified. For the general case of
a# 0, however, the situation is much more complicated. An
example of a small cluster is given in Fig. 20. Again, a slight
change in o produces a large effect of the resulting curve for
N=5. The force distribution departs strongly from the uni-
form case in both situations, with two different qualitative
shapes and with the total force of the extreme motors in the
cluster changing considerably. It is also interesting to ob-
serve that the force distribution in the case of N=4 resembles
very much that of N=5 with the larger value of o, indicating
that the reason behind this transition with o is the same type
of commensurability effect discussed in Fig. 11: the motor
structure changes from a compact and rather rigid cluster of
five motors to a less packed one of four motors plus a loosely
attached one.

An important issue in modeling the dynamics of motor
clusters is the degree of coordination of the motor steps in
groups of motors. Different possibilities were investigated,
for instance, in the problem of motors pulling on membrane
tubes in Ref. [18]. In Sec. V we have addressed the issue of
motor coordination of small clusters and have proposed a
quantification in terms of the comparison with the theoretical
minimum of the excitation rate. In addition to the coordina-
tion of the cycles of the motors (which one may associate to
some degree of “frequency locking”), one may consider to
what extent the stepping is synchronous (“phase locking”).
For large N, the fact that the nearly periodic and rigid struc-
ture of the cluster is preserved implies that the stepping of
motors is not only highly coordinated but highly synchro-
nized. Typically, a large cluster will stay still until a sufficient
number of motors can make a step and pull the whole cluster
one step further. In Fig. 21 we show a characteristic trajec-
tory of a motor cluster. Note that all motors except the last
two move quite synchronously, even though the waiting time
before each step is very stochastic. The motion is thus essen-
tially nonperiodic but highly synchronized.
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FIG. 21. (Color online) Trajectory for a cluster with N=6 and
hard-core interaction; *=€/Vy(F). Inset: zoom in on the trajectory;
F=N/2F,, a=0.18, B=14.1, 6=0.2, and a=0.1.

B. Bidirectional motion

One interesting consequence of the highly compact and
effectively rigid structure of large motor clusters, even if
only excluded volume interactions are present, is that they
will exhibit dynamical behavior of rigid motor assemblies
with the same number of motors. One of the most striking
features of these is the occurrence of bidirectional motion,
that is, the existence of two possible velocities, one positive
and one negative, and the occurrence of spontaneous transi-
tions between the two. This stochastic bidirectional motion
was described in Ref. [9]. Note that in both directions, the
external force applied to the first motor tends to keep the
cohesion of the cluster, so the cluster remains approximately
rigid in both cases.

Figure 22 shows the trajectory of a motor cluster where
bidirectionality is present. The two slopes of the trajectory
clearly indicate two well-defined velocities. The velocity his-
togram can be seen in the inset. Finally, in Fig. 23 we illus-
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FIG. 22. (Color online) Trajectory of the mean position of a
cluster of N=40 motors in the bimodality zone. The system clearly
shows two different velocities that are maintained for long periods
of time. =€/ Vy(F). Inset: velocity distribution function showing
the two peaks.
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FIG. 23. (Color online) Velocity-force curve for N=40 showing
the appearance of a second velocity peak and the sharp transition in
the mean as the force is increased. V, and V_ represent the mean
value of the velocity associated with each peak of the distribution,
and Vy represents the global mean; a=1.85, 8=1.9, a=0.1, and
=0.37.

trate how the presence of bistability manifests in the analysis
of the velocity-force curve. We have plotted the continuation
of the two velocity branches (the values of the two peaks of
the bimodal velocity distribution) and the time-averaged
curve that interpolates between them, when the spontaneous
transitions between the two branches are averaged out. For
very large N, the transition times become also very large, and
the average curve in the limit of large N may be difficult to
observe, as the system breaks ergodicity in that limit.

VIII. IMPLICATIONS FOR BIOLOGICAL MOTORS

The key ingredient that brings out the type of motor co-
operativity described here is the fact that an external load is
applied to one or a few motors, while others are free to move
unloaded until they meet the loaded ones. This situation is
directly motivated by examples from the biological context.
Under these circumstances a sort of ‘“‘solidarity principle”
makes the unloaded motors to team up with the loaded ones,
not only to undertake the task jointly, but in general doing it
more efficiently in group. In biological terms, the total me-
chanical work obtained per ATP molecule that is hydrolyzed
is higher when motors act together. Similarly, the joint speed
and the joint force are also enhanced beyond the simple su-
perposition of the effects of individual motors. If, in addition,
a certain degree of attraction between motors is present, the
cooperative performance is further improved to the point
where, for instance, each motor in the group contributes with
a finite power while moving at a velocity that is higher than
its velocity at zero load (situation in which it would perform
no mechanical work). It remains an open question to eluci-
date to what extent biomolecular motors do take advantage
of these possibilities for performing specific tasks.

It has now been recognized that several processive mo-
lecular motors do behave as Brownian motors, driven by a
ratchet mechanism of noise rectification, most remarkably,
the subfamily of monomeric kinesins called KIF1A and
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KIF1B in mammals [30,43-45], together with their inverte-
brate counterpart, UNC104 [46], and also the MCAK motor
that controls microtubule depolymerization [47]. The first
two examples are found specifically in axonal trafficking, a
situation where transport is most demanding due to the long
distances traveled in axons and due to the particularly heavy
trafficking conditions of them, with the possibility of traffic
jams as a serious threat precluding neurodegenerative dis-
eases such as Alzheimer’s [32]. KIF1A is a monomeric kine-
sin motor specifically in charge of transport of synaptic
vesicle precursors, an example of very large tubular vesicles
(as long as 10 um) [48] crucial for neuronal function, which
have to be transported along the axon. It is rather puzzling
that the most demanding transport requirements are assigned
to relatively inefficient motors such as KIF1A, a noise-driven
motor. Indeed, monomeric kinesin is not found in conven-
tional intracellular traffic, where dimeric (two-headed) kine-
sin motors, which follow a hand-over-hand cycle, are not
only more deterministic (nearly ballistic) but are also faster,
stronger, and more efficient than the very noisy and erratic
KIF1A. Our results in this paper suggest that the reason be-
hind the specificity of KIF1A in transport of large soft car-
goes along axons could be their high cooperativity in the
arrangement of unequal loading. In large groups, which are
required in axonal transport, monomeric kinesin may
strongly outperform conventional kinesin. This refers not
only to force transmission, velocity, and efficiency, but also
to long-distance processivity, since the detachment kinetics
from microtubules of KIF1A has also been claimed to be less
sensitive to force than that for conventional kinesin [49].
One aspect of large motor clusters that does not have any
obvious biological function is the bidirectional motion. Even
though the actual cause is still unclear, it is worth mentioning
that velocity reversal has actually been observed in axonal
transport of large vesicles [48].

The above questions will be quantitatively explored in
detail elsewhere [33], but it is worth completing the discus-
sion here with some relevant numbers. The parameters of the
two-state ratchet model adequate for KIF1A can be extracted
from the literature [30,43]. The most determinant one is the
noise strength which can be directly measured studying the
diffusion in the weakly bound state. This yields values for D
in the range 20-40 nm? ms~', which indeed corresponds to
the limit of large noise strength. During the lifetime
7=4 ms of the weakly bound state, the typical diffusive
displacement in that state is significantly larger than the
ratchet period €=8 nm. The strong-noise regime is the one
that ensures maximal velocity of the single motor, with a
linear velocity-force dependence, but gives the motor a
strong randomness. This randomness is obviously rectified
for large groups of motors in the presence of a strong force
unequally loaded. The only approximation in our model that
is not quite realistic for KIF1A is the vanishing dwell time
assumed at the ATP-binding site (the lowest point of the
sawtooth potential), which in the conditions of ATP satura-
tion can be as large as 10 ms. This fact can be easily incor-
porated in our model but may have nontrivial effects in some
cases. Preliminary simulations with realistic dwell times
show that, for small and moderately large clusters, the exten-
sivity condition is fulfilled for hard-core repulsion, so for this
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case and relatively small clusters, relation (37) holds. Finite
processivity can also be incorporated following the scheme
of Ref. [49]. When attractive interactions are included the
dynamics is also highly cooperative but more complex [33].

While excluded volume repulsion can be easily justified
and estimated for actual molecular motors, the origin of a
possible weak attraction is less obvious. Attractive interac-
tions of motor proteins in the kinesin superfamily have been
explicitly reported in Ref. [50]. On the other hand, the pos-
sibility that monomeric kinesin motors are organized by lipid
rafts in the membrane where they are linked [29,46,51] has
been reported as a possible external mechanism of control of
the cluster size, cohesion, and stability. This arrangement
would introduce an effective attraction that could have simi-
lar effects to those reported in this paper for attractive inter-
actions.

Concerning the most common family of dimeric kinesins,
the present discussion is in principle not directly applicable
because, even though there may be diffusive steps in the
motor cycle, this is much more deterministic than mono-
meric kinesins. A more appropriate two-state ratchet model
would not contain the diffusive weakly bound state, but two
identical but shifted sawtooth potentials [26,49]. The interac-
tion between motors is still an important element in the col-
lective behavior of self-organized clusters pulling on fluid-
like cargoes, but the possibility of direct force transmission
seems probably more limited. In this case one may expect
that the predictions of the ASEP approach of Ref. [17], im-
plying a saturation of the velocity curves with the number of
motors, could be more realistic than for monomeric kinesin.

IX. SUMMARY AND CONCLUSIONS

In this paper we have addressed the dynamics of groups
of noise-driven processive motors that can be modeled by a
two-state ratchet potential, when they are attached to a soft
fluidlike cargo. This situation, motivated from real processes
in cell biology, leads naturally to the prototypical problem
where an external force is applied only to the leading motor
and the rest accumulate behind. The asymmetric loading of
the system is crucial for the formation of a motor cluster, and
its dynamical behavior is nontrivially controlled by the value
of the external force. This acts as an effective attraction that
keeps the cluster dynamically stable and relatively compact,
even though the direct motor-motor interactions are not ca-
pable to give rise to a true motor assembly. Therefore, one
may call such motor clusters “self-organized.” The effective
attraction that holds the cluster together is from purely kine-
matic origin, since it results from the different velocity of the
loaded and the unloaded motors. This in turn depends on the
actual velocity-force curve of the motors, but the problem in
general cannot be reduced to the knowledge of this charac-
terization of the individual motor plus the mutual interac-
tions. The nontrivial correlations between positional degrees
of freedom and internal conformational states of motors due
to mutual interactions result in a collective behavior that is
genuinely different from that of the single motor problem.
Some of the collective effects are reminiscent of phenomena
already encountered in rigid motor assemblies, but other are
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unique to the asymmetric loading of the system, typically
those dependences on the external loading that originate
from changes in the cluster inner structure and dynamics.

As a general conclusion, we have found that, generically,
the joint performance of such self-organized clusters is better
than the prediction of a mean-field ansatz that would imply
the naive superposition of the individual contributions of the
motors. The actual system outperforms the mean-field pre-
diction in terms of force, velocity, and energetic efficiency.
We have called this phenomenon “enhanced cooperativity.”
Within this scenario, whenever an external force is unevenly
distributed to a set of motors, these team up to share the task
of overcoming that force. Remarkably, with only repulsive
interactions, this self-organized team work is such that each
motor in the group will perform better than it would do if
isolated and operating against its proportional part of the
force. If, in addition, a certain degree of attraction is present
between motors, then each motor contributes to the group
much more than it would be capable of doing alone in any
circumstances. For instance, it moves faster than alone in the
absence of force, but performs mechanical work against a
finite force.

We have shown that the mechanism of cooperativity is of
deterministic nature and originates from the interactions be-
tween motors at different internal states. That is, a motor that
is in the noise-driven state can be pushed (pulled) by another
motor behind (ahead) that is sliding down the ratchet poten-
tial. In a situation where the noise is too weak, for the ap-
plied load to produce significant directed motion even if the
load is split in half and half for two motors, under asymmet-
ric loading a motor pair will be able to advance provided that
the noise is sufficient to drive the unloaded motor. The trail-
ing motor would catch up the loaded one and will push it
forward whenever the right combination of respective states
occurs. Note that in this example both the loaded and the
unloaded motors make essentially no mechanical work (have
zero efficiency) when separated, with one moving without
external force and the other nearly stalling at a finite force.
Similarly if the external load is equally distributed, the two
motors would be nearly stalling. However, with asymmetric
loading and simply hard-core repulsion, the motor pair will
produce a finite power. This is possible, because once the
motors interact, an additional mechanism of directed motion
that is essentially noise independent is at work.

According to this analysis, the enhancement of cooperat-
ivity will be quantitatively more pronounced for small noise
strength. If the ratchet potential of the motors is not fully
asymmetrical (a# 0), there is a minimal amount of noise
necessary for the deterministic mechanism to be effective.
However, if we take the limit a—0 first, the cooperative
mechanism of directed motion remains in the limit D—0.
We have reported exact results for velocity-force and
efficiency-force curves of the single-motor problem, and for
the two-motor problem in the limit of vanishing noise. The
former yield the asymptotic scaling of enhanced cooperativ-
ity in the limit of weak noise. The latter prove, in some
ranges of parameters, that two motors with hard-core repul-
sion do have a finite velocity in the limit of vanishing noise.
These analytical results rigorously prove the phenomenon of
enhanced cooperativity in the weak-noise limit in some pa-
rameter regimes.

PHYSICAL REVIEW E 82, 061903 (2010)

We have also studied the limits of long-ranged repulsive
potentials and large noise strength to define the convergence
to the mean-field behavior, a trivial situation which we may
call neutral cooperativity. In this case, the cluster dynamics is
in fact reduced to the single-motor problem. One important
feature that is contained in this situation is the extensivity of
the force, that is, the fact that the motors are able to transmit
forces and therefore have an equal share of it. The phenom-
enon of force transmission, which is also present for en-
hanced cooperativity, is a natural consequence of the two-
state ratchet model, but is a nontrivial result. In fact, for
other approaches to cooperative motors under asymmetric
loading, the possibility of force transmission is precluded or
limited to relatively small numbers of motors [17].

The reversed phenomenon, which we called reduced co-
operativity, has also been detected and analyzed. It has been
shown that it occurs much more rarely, and typically it origi-
nates at particular parameter values that exhibit some kind of
resonance. It also requires a significant amount of noise and
is also more pronounced for less asymmetric ratchets. In any
case, the phenomenon is quantitatively small and never as
dramatic as its opposite phenomenon of enhanced cooperat-
ivity.

In the case where a weak (nonbinding) attractive interac-
tion is added to the excluded volume repulsion the problem
is dynamically richer. Nonmonotonic velocity-force curves
with a rather complex structure are found. These lead to a
self-regulation of the number of motors in the cluster into
arrangements that have velocities larger than that of the un-
loaded motor and are performing a finite power per motor.
The collective efficiency of these clusters is even larger than
that for purely hard-core repulsion. In the conditions of
maximal velocity (at any of the local maxima of the velocity-
force curve), the motion of the motors becomes highly coor-
dinated and approaches the theoretical limit of one excitation
per step for each motor.

Nonmonotonic velocity-force curves have been reported
in the literature in rather different contexts, in particular as a
collective result of large numbers of strongly coupled mo-
tors, associated to the phenomenon of negative friction
[8-10,52]. The mechanism responsible for this phenomenon
here is completely different. It originates from the fact that
changing the external force, the dynamical conditions lead-
ing to the formation of the cluster are modified. The statistics
of the cluster structure, for instance, the average motor sepa-
ration, are sensitive to the external force and at the same time
are responsible for the degree of cooperativity. Accordingly,
increasing the force may result in a more compact cluster,
and hence a more cooperative one. This phenomenon is not
exclusive of the attractive case. We have also shown ex-
amples for the case of pure hard-core repulsion.

Further nontrivial effects originate from spatial reso-
nances when the motor separation and the scales of the
ratchet potential show some degree of commensurability.
The problem is particularly rich for finite asymmetry of the
ratchet potential a#0. Interesting examples where such
resonance phenomena occur are exhibited, for instance, in
the velocity-force curves of the case with weak attractive
forces, where a rather nontrivial structure of the local peaks
of the velocity-force curves has been elucidated.
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The spatial structure of force transmission along the mo-
tor cluster has also been studied, showing a rather uniform
force distribution for @=0, in particular for weak attractive
interactions. For a # 0, however, the force distribution is in
general highly nontrivial and sensitive to parameters. In par-
ticular, commensurability effects show also a rich scenario of
qualitative force distributions.

Some of the most interesting collective effects emerge in
the limit of large numbers of motors, with highly coordinated
and nontrivial modes of propagation, such as the occurrence
of bidirectional motion with spontaneous transitions between
the peaks of a bimodal velocity distribution. Some of these
phenomena are reminiscent of the dynamics of large rigid
motor assemblies due to the fact that, in that limit, the motor
cluster structure becomes very regular and periodic, thus ef-
fectively behaving as rather rigid assemblies. We have also
shown that such clusters do behave quite synchronously even
for purely hard-core repulsion.

Finally, we have briefly discussed the implications of the
above results for actual molecular motors in biology. While it
is yet unclear to what extent all these phenomena may actu-
ally be exploited in real biological processes, we have argued
that, in general, the high cooperativity of Brownian motors
pulling on soft cargoes could be a key ingredient to under-
stand the role of monomeric kinesin motors in axonal trans-
port, a problem of direct relevance to neurodegenerative dis-
eases [32]. The specificity of these motors, which are highly
inefficient when working individually compared to conven-
tional kinesin, precisely for situations where the intracellular
transport is particularly demanding, such as in axons, could
be explained on the basis of their high degree of cooperativ-
ity when acting collectively. Nevertheless, regardless of the
uses that biology may have developed of the possibilities of
high collective performance of Brownian motors, these may
always be potentially exploited in artificial motor setups,
such as that of Ref. [53], which could potentially benefit
from them.
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APPENDIX A: EXACT SOLUTION
OF THE SINGLE-MOTOR PROBLEM

Here, we sketch the exact calculation of the velocity-force
curve for a single motor within the minimal model of Sec.
IT A. To simplify the calculation, the model assumes that the
decay time from the weakly bound state U, is a constant 7
and that noise may be neglected in the U, state. The dwell
time at the minimum of the U, state prior to excitation is also
neglected. None of these assumptions are crucial, and they
may be relaxed without problem, but give rise to more com-
plicated expressions.

Under these conditions, the only source of stochasticity is
the diffusion in the U, state. The probability distribution for
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the position of the motor after the time 7 with respect to the
origin of coordinates at the initial position at one minimum
of U, is simply

—(x + FiN%4D7
e 9’

P(x) = (A1)

V4Dt

where F is the external force, \ is the friction coefficient, and
F7/\ is the mean position. The motor will decay at U,(x)
with the above probability distribution, and then slide down
deterministically until a minimum of U is reached, closing a
cycle. This minimum can be the initial condition or belong to
another period of the ratchet, thus implying a net displace-
ment. The motion of the motor can be understood as a se-
quence of such cycles. On each cycle the motor is displacing
a distance Ax that is by definition a multiple of ¢ and is
spending some time that depends on the decay point x. If
(Ax) is the mean displacement on a cycle and (Ar) is the
average duration of the cycle, then the mean velocity is given
by

(Ax)
Ty

Both numerator and denominator of this expression can be
written explicitly using Eq. (A1). We have

(A2)

* a+in
(Axy= > nl P(x)dx, (A3)
n=—x a+l(n-1)
*® nl —x
Ar)= + P(x)d
< > n:z—oo a—l+nl(T U_F/)\> (X) o
a+nl X
+ f +———— |P(x)dx. (A4)
nl (l - Cl)U
—+F/\

After some algebra the velocity may be expressed in the
form

¢
Vi =v(l-f)————, AS
R vy (A3)
where the function ¢ is given by
- nfB _ _ o182
= E —e e+ n+fall ~a)BY g, (A6)
n=—o J -1 T
and H is given by
[z +n+fa(l - a)]BY
H= E f ZB ¢ dz. (A7)
=m0 af+ 1-a)

The stall force F can be directly obtained from these curves
or from simple arguments. First, it must satisfy F;=M\v be-
cause no positive velocity is possible if the motor cannot
slide down the ratchet potential. On the other hand, the mean
velocity will be zero if, once in the U, state, the force brings
the motor back to exactly the midpoint of the ratchet period
at time 7. Therefore, the stall force is given by
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‘ { 1-2a }
Fy=Av min| 1, ——— |. (A8)
2a(1 —a)

Note that the above result is independent of noise because
we have neglected diffusion in the U, state, thus preventing
the possibility of the motor to go uphill in the ratchet poten-
tial. The result takes also a particularly simple form because
of the condition of constant decay time 7, but the result can
be easily extended to a distributed decay time.

APPENDIX B: PROOF OF ENHANCED COOPERATIVITY
IN SOME SIMPLE CASES

Enhanced cooperativity is shown to be generic with only
relatively small ranges of parameters where it is contra-
dicted. Here, we sketch the proofs of enhanced cooperativity
for N=2 in the limit of vanishing noise strength, in situations
where this can be rigorously proved with rather simple argu-
ments.

To proof enhanced cooperativity Vy(F)>V,(F/N) for
D=0" we only need to show that Vy(F)>0 for finite F be-
cause V;(F)—0 for finite F. For N=2 if the motors can
never go backward in the ratchet more than one period, we
only need to show that there is a finite probability that both
motors will advance to the next ratchet period. This can be
easily proven if the two conditions of Fig. 24 are met.

Considering an initial condition in which the two motors
are in contact at the bottom of state U, a first condition C1
requires that when the leading motor (the one loaded with
the external force F) jumps to the weakly bound state U, it
advances when pushed by the trailing one and falls after the
decay time 7 to the state U; before the second motor has
reached the minimum of U;. This can be expressed as

%(U—F)7'< o, (B1)

where v is the sliding velocity and o. In the dimensionless
form this can be written as

-pa<a. (B2)

A second condition C2 requires that after the first motor has
advanced a period due to C1 it cannot interfere in the possi-
bility of the second motor to advance. Since the first motor
can only move backward in the weakly bound state, this
condition reads

af <1-a. (B3)

Whenever both conditions C1 and C2 are met, we have
proven that there exists a finite probability that both motors
in the cluster advance to the next period. The motors will
close the cycle by returning to the initial condition at the
bottom of the state U; but in the next period of the ratchet
potential. Now, combining both conditions we get a suffi-

cient condition for enhanced cooperativity of the form
a-20<af<1-0. (B4)

From this result we may find a condition for the parameters
that satisfies enhanced cooperativity for the whole range of
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FIG. 24. (Color online) Schematic representation of the condi-
tions needed to prove enhanced cooperativity. C1: starting with the
two motors together in the bound state U, the first motor arrives to
the transition zone and jumps to the weakly bound state U,, and
then both motors travel forward and after a time 7 the first motor
goes back to U; before the second one has reached the transition
zone. C2: the first motor cannot interfere with the second one in the
weakly bound state Fr<</-o.

forces smaller than the stall force, f [0, 1], which reads

%a<6’<1—a. (B5)
If we relax condition C1 to a less restrictive one, we can
obtain a more general expression: when the first motor jumps
to the weakly bound state, we may allow the second one to
reach the transition point and change state. Now, with both
motors in U, and moving backward due to the external force,
we may require that the first one falls to U, in the next
ratchet period, not the original one. Combining this new con-
dition with the same condition C2 leads to a stronger suffi-
cient condition for enhanced cooperativity of the form

éa<6'<1—a. (B6)
The line of reasoning sketched here for hard-core repulsion
in the limit of vanishing noise can be generalized to obtain
even less restrictive conditions, exact lower bounds for the
velocity, and actually to compute the exact velocity-force
curves for two motors by studying the whole tree of
possibilities that may close the cycles with different displace-
ments and time lapses. This study will be presented else-
where [39].
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